2 Commits

Author SHA1 Message Date
4e8b13ad77 Create ps2.c
add initial ps/2 driver code. This will need wired up to be used
2025-12-17 05:50:02 -08:00
9f8ca3a60c Create ps2.h 2025-12-17 05:47:59 -08:00
27 changed files with 466 additions and 718 deletions

6
.gitignore vendored
View File

@@ -1,5 +1 @@
.build.env
build
cross
.cache/
compile_commands.json
build

View File

@@ -1,12 +1,10 @@
AS = nasm
ASFLAGS = -f elf32 -g -F dwarf
CC = i386-elf-gcc
LD = i386-elf-ld
CC = gcc
LD = ld
QEMU= qemu-system-i386
OBJCOPY = i386-elf-objcopy
BUILD_DIR = build
CROSS_DIR = cross
DISK_IMG = $(BUILD_DIR)/disk.img
STAGE2_SIZE = 2048
@@ -15,37 +13,31 @@ KERNEL_ASM_SRC = $(wildcard kernel/*.asm)
KERNEL_OBJ = $(patsubst kernel/%.c, $(BUILD_DIR)/%.o, $(KERNEL_C_SRC))
KERNEL_OBJ += $(patsubst kernel/%.asm, $(BUILD_DIR)/asm_%.o, $(KERNEL_ASM_SRC))
KLIBC_SRC = $(wildcard klibc/src/*.c)
KLIBC_OBJ = $(patsubst klibc/src/%.c, $(BUILD_DIR)/klibc/%.o, $(KLIBC_SRC))
all: $(DISK_IMG)
.PHONY: stage1 stage2 kernel run gdb clean
stage1: $(BUILD_DIR)
$(AS) $(ASFLAGS) -o $(BUILD_DIR)/$@.o bootloader/$@.asm
$(LD) -Ttext=0x7c00 -melf_i386 -o $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.o
$(OBJCOPY) -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin
objcopy -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin
# NOTE: Stage2 final size should be checked against `$(STAGE2_SIZE)` by the build system to avoid an overflow.
# Alternatively, convey the final stage2 size through other means to stage1.
stage2: $(BUILD_DIR)
$(AS) $(ASFLAGS) -o $(BUILD_DIR)/stage2.o bootloader/stage2.asm
$(CC) -std=c11 -ffreestanding -nostdlib -nostdinc -fno-stack-protector -m32 -Iklibc/include -g -c -o $(BUILD_DIR)/stage2_load.o bootloader/stage2_load.c
$(CC) -std=c11 -ffreestanding -nostdlib -fno-stack-protector -m32 -g -c -o $(BUILD_DIR)/stage2_load.o bootloader/stage2_load.c
$(LD) -Tbootloader/stage2.ld -melf_i386 -o $(BUILD_DIR)/$@.elf $(BUILD_DIR)/stage2.o $(BUILD_DIR)/stage2_load.o
$(OBJCOPY) -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin
objcopy -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin
truncate -s $(STAGE2_SIZE) $(BUILD_DIR)/$@.bin
$(BUILD_DIR)/asm_%.o: kernel/%.asm
$(AS) $(ASFLAGS) -o $@ $<
$(BUILD_DIR)/%.o: kernel/%.c
$(CC) -std=c11 -ffreestanding -nostdlib -nostdinc -fno-stack-protector -m32 -Iklibc/include -g -c -o $@ $<
$(CC) -std=c11 -ffreestanding -nostdlib -fno-stack-protector -m32 -g -c -o $@ $<
$(BUILD_DIR)/klibc/%.o: klibc/src/%.c
$(CC) -std=c11 -ffreestanding -nostdlib -nostdinc -fno-stack-protector -m32 -Iklibc/include -g -c -o $@ $<
kernel: $(KERNEL_OBJ) | $(BUILD_DIR) $(KLIBC_OBJ)
$(LD) -melf_i386 -Tkernel/linker.ld -o $(BUILD_DIR)/kernel.elf $(KERNEL_OBJ) $(KLIBC_OBJ)
kernel: $(KERNEL_OBJ) | $(BUILD_DIR)
$(LD) -melf_i386 -Tkernel/linker.ld -o $(BUILD_DIR)/kernel.elf $(KERNEL_OBJ)
$(DISK_IMG): stage1 stage2 kernel
dd if=$(BUILD_DIR)/stage1.bin of=$@
@@ -55,7 +47,6 @@ $(DISK_IMG): stage1 stage2 kernel
$(BUILD_DIR):
mkdir -p $@
mkdir -p $(BUILD_DIR)/klibc
run:
qemu-system-i386 -s -S $(DISK_IMG)
@@ -65,9 +56,3 @@ gdb:
clean:
rm -rf $(BUILD_DIR)
clean-cross:
rm -rf $(CROSS_DIR)
rm -rf .build.env
clean-all: clean clean-cross

View File

@@ -5,7 +5,7 @@
[![Platform](https://img.shields.io/badge/platform-x86_IA32-lightgrey?style=flat-square)](https://en.wikipedia.org/wiki/IA-32)
[![Made with](https://img.shields.io/badge/made%20with-C%20%26%20NASM-9cf?style=flat-square)](#)
> **ClassicOS** is a 32-bit Intel x86 operating system built from scratch using C, NASM, and GCC.
> **ClassicOS** is a 32-bit Intel x86 operating system built from scratch using C, NASM, and GCC.
> Designed for 386, 486, and Pentium-class CPUs, it runs in protected mode, outputs to VGA text mode and serial ports, and supports floppy/HDD boot with basic FAT support.
---
@@ -35,7 +35,6 @@ Youll need the following tools installed:
- `qemu-system-i386`
Optional:
- `gdb`
- `vncviewer` (TigerVNC or similar)
@@ -43,27 +42,13 @@ Optional:
## 🛠️ Building ClassicOS
Clone repository:
Clone and build:
```sh
```bash
git clone https://github.com/gbowne1/ClassicOS.git
cd ClassicOS
```
Run `configure` script to build a cross-compiler toolchain for `i386-elf`:
```sh
./configure
```
Source the `.build.env` file to add the cross-compiler toolchain to your PATH:
```sh
source .build.env
```
Build the kernel:
```sh
make
```
build kernel
for %f in (*.c) do gcc -m32 -O0 -Wall -Wextra -Werror -pedantic -ffreestanding -nostdlib -fno-pic -fno-stack-protector -fno-pie -march=i386 -mtune=i386 -c "%f" -o "%f.o"

View File

@@ -24,3 +24,75 @@ _start:
call load_kernel
jmp eax
; ----------------------------------------------------------------------------
; ATA read sectors (LBA mode)
;
; sysv32 abi signature:
; void ata_lba_read(uint32_t lba, uint8_t nsect, void *addr);
; ----------------------------------------------------------------------------
ata_lba_read:
push ebp
mov ebp, esp
push ebx
push ecx
push edx
push edi
mov eax, [ebp+8] ; arg #1 = LBA
mov cl, [ebp+12] ; arg #2 = # of sectors
mov edi, [ebp+16] ; arg #3 = buffer address
and eax, 0x0FFFFFFF
mov ebx, eax ; Save LBA in RBX
mov edx, 0x01F6 ; Port to send drive and bit 24 - 27 of LBA
shr eax, 24 ; Get bit 24 - 27 in al
or al, 11100000b ; Set bit 6 in al for LBA mode
out dx, al
mov edx, 0x01F2 ; Port to send number of sectors
mov al, cl ; Get number of sectors from CL
out dx, al
mov edx, 0x1F3 ; Port to send bit 0 - 7 of LBA
mov eax, ebx ; Get LBA from EBX
out dx, al
mov edx, 0x1F4 ; Port to send bit 8 - 15 of LBA
mov eax, ebx ; Get LBA from EBX
shr eax, 8 ; Get bit 8 - 15 in AL
out dx, al
mov edx, 0x1F5 ; Port to send bit 16 - 23 of LBA
mov eax, ebx ; Get LBA from EBX
shr eax, 16 ; Get bit 16 - 23 in AL
out dx, al
mov edx, 0x1F7 ; Command port
mov al, 0x20 ; Read with retry.
out dx, al
mov bl, cl ; Save # of sectors in BL
.wait_drq:
mov edx, 0x1F7
.do_wait_drq:
in al, dx
test al, 8 ; the sector buffer requires servicing.
jz .do_wait_drq ; keep polling until the sector buffer is ready.
mov edx, 0x1F0 ; Data port, in and out
mov ecx, 256
rep insw ; in to [RDI]
dec bl ; are we...
jnz .wait_drq ; ...done?
pop edi
pop edx
pop ecx
pop ebx
pop ebp
ret

View File

@@ -9,4 +9,6 @@ SECTIONS {
*(.bss*)
*(COMMON)
}
read_buf = .;
}

View File

@@ -1,39 +1,11 @@
#include <stddef.h>
#include <stdint.h>
// ATA IO Ports
#define ATA_PRIMARY_DATA 0x1F0
#define ATA_PRIMARY_ERR_FEATURES 0x1F1
#define ATA_PRIMARY_SEC_COUNT 0x1F2
#define ATA_PRIMARY_LBA_LOW 0x1F3
#define ATA_PRIMARY_LBA_MID 0x1F4
#define ATA_PRIMARY_LBA_HIGH 0x1F5
#define ATA_PRIMARY_DRIVE_SEL 0x1F6
#define ATA_PRIMARY_COMM_STAT 0x1F7
// ATA Commands
#define ATA_CMD_READ_PIO 0x20
#define ATA_CMD_WRITE_PIO 0x30
// ELF Ident indexes
#define EI_NIDENT 16
#define EI_NIDENT 16
// Program header types
#define PT_NULL 0
#define PT_LOAD 1
// Disk sector size
#define SECTOR_SIZE 512
#define PH_PER_SECTOR (SECTOR_SIZE / sizeof(Elf32_Phdr))
// Kernel start LBA
#define KERN_START_SECT 5
// VGA
// Expects bios initialization for text mode (3), buffer at 0xb8000
#define VGA_ADDRESS 0xB8000
#define VGA_COLS 80
#define VGA_ROWS 25
#define PT_NULL 0
#define PT_LOAD 1
// ELF Header (32-bit)
typedef struct {
@@ -65,171 +37,82 @@ typedef struct {
uint32_t p_align;
} __attribute__((packed)) Elf32_Phdr;
static inline uint8_t inb(uint16_t port)
{
uint8_t ret;
__asm__ volatile ("inb %1, %0"
: "=a"(ret)
: "Nd"(port));
return ret;
}
static inline void outb(uint16_t port, uint8_t val)
{
__asm__ volatile ("outb %0, %1"
:
: "a"(val), "Nd"(port));
}
static inline uint16_t inw(uint16_t port)
{
uint16_t ret;
__asm__ volatile ("inw %1, %0"
: "=a"(ret)
: "Nd"(port));
return ret;
}
static inline void ata_wait_bsy() {
while (inb(ATA_PRIMARY_COMM_STAT) & 0x80);
}
static inline void ata_wait_drq() {
while (!(inb(ATA_PRIMARY_COMM_STAT) & 0x08));
}
static void ata_read_sector(void *addr, uint32_t lba) {
ata_wait_bsy();
outb(ATA_PRIMARY_DRIVE_SEL, 0xE0 | ((lba >> 24) & 0x0F));
outb(ATA_PRIMARY_SEC_COUNT, 1);
outb(ATA_PRIMARY_LBA_LOW, (uint8_t)lba);
outb(ATA_PRIMARY_LBA_MID, (uint8_t)(lba >> 8));
outb(ATA_PRIMARY_LBA_HIGH, (uint8_t)(lba >> 16));
outb(ATA_PRIMARY_COMM_STAT, ATA_CMD_READ_PIO);
uint16_t* ptr = (uint16_t*)addr;
ata_wait_bsy();
ata_wait_drq();
for (int i = 0; i < 256; i++) {
*ptr++ = inw(ATA_PRIMARY_DATA);
}
}
static void ata_read_sectors(uint8_t *addr, uint32_t offset, uint32_t size)
{
// Reads are offset from the starting sector of the kernel
uint32_t lba = KERN_START_SECT + offset / SECTOR_SIZE;
uint32_t off = offset % 512;
uint8_t data[512];
while (size > 0) {
ata_read_sector(data, lba);
uint32_t copy = 512 - off;
if (copy > size) {
copy = size;
}
for (uint32_t i = 0; i < copy; i++) {
addr[i] = data[off + i];
}
addr += copy;
size -= copy;
lba++;
off = 0;
}
}
static void on_error(const char *msg)
{
uint16_t *ptr = (uint16_t *)VGA_ADDRESS;
// Clear
uint16_t val = 0x0f00 | (uint8_t)' ';
for (size_t i = 0; i < VGA_COLS * VGA_ROWS; i++) {
ptr[i] = val;
}
// Print error
for (size_t i = 0; msg[i]; i++) {
ptr[i] = 0xf00 | (uint8_t)msg[i];
}
// Halt
while (1) {
__asm__("hlt");
}
}
// Load an ELF executable into memory.
// NOTE: Only 32-byte program headers are supported.
// Returns the entry point to the program.
static void *elf_load(const void *data) {
const Elf32_Ehdr *header = (const Elf32_Ehdr*)data;
if (header->e_phentsize != sizeof(Elf32_Phdr)) {
// The bootloader only handles 32-byte program header entries
on_error("ERROR: Unsupported program header entry size, halting...");
}
// Buffer for the program headers
uint8_t file_buf[SECTOR_SIZE];
// Current file offset to the next program header
uint32_t file_offset = header->e_phoff;
static int elf_load(const void* data, void (*load_segment)(uint8_t *vaddr, uint32_t src, uint32_t size)) {
const Elf32_Ehdr* header = (const Elf32_Ehdr*)data;
const Elf32_Phdr* ph = (const Elf32_Phdr*)((uint8_t*)data + header->e_phoff);
for (int i = 0; i < header->e_phnum; i++) {
// Check for sector boundary.
// Program headers are read in a sector at a time
// 512 / 32 = 16 PH per sector
if (i % PH_PER_SECTOR == 0) {
uint32_t count = (header->e_phnum - i) * sizeof(Elf32_Phdr);
if (count > SECTOR_SIZE) {
count = SECTOR_SIZE;
}
// Reads
ata_read_sectors(file_buf, file_offset, count);
file_offset += count;
}
// PH being processed currently, index mod 16 as headers
// are being loaded in sector by sector.
const Elf32_Phdr *ph = (const Elf32_Phdr *)file_buf + (i % PH_PER_SECTOR);
// Discard non-load segments
if (ph->p_type != PT_LOAD)
if (ph[i].p_type != PT_LOAD)
continue;
// Load in the segment
uint32_t offset = ph->p_offset;
uint32_t filesz = ph->p_filesz;
uint32_t memsz = ph->p_memsz;
uint8_t *vaddr = (uint8_t *)ph->p_vaddr;
ata_read_sectors(vaddr, offset, filesz);
uint32_t offset = ph[i].p_offset;
uint32_t vaddr = ph[i].p_vaddr;
uint32_t filesz = ph[i].p_filesz;
uint32_t memsz = ph[i].p_memsz;
// Copy data segment
//load_segment((uint8_t *)vaddr, offset, filesz);
load_segment((uint8_t *)vaddr, offset, filesz);
// Zero remaining BSS (if any)
if (memsz > filesz) {
uint8_t* bss_start = vaddr + filesz;
uint8_t* bss_start = (uint8_t*)(vaddr + filesz);
for (uint32_t j = 0; j < memsz - filesz; j++) {
bss_start[j] = 0;
}
}
}
// Return the entry point
return (void *)header->e_entry;
return header->e_entry;
}
#define KERN_START_SECT 5
#define MAX(a, b) ((a)>(b) ? (a) : (b))
extern void ata_lba_read(uint32_t lba, uint8_t nsect, void *addr);
extern uint8_t read_buf[];
static uint32_t
total_header_size(const Elf32_Ehdr *header) {
uint32_t phend = header->e_phoff + header->e_phentsize*header->e_phnum;
// Align to 512
return (phend + 511) & ~511;
}
static void read_sectors(uint8_t *vaddr, uint32_t offset, uint32_t size) {
// # of sectors to read
uint32_t rem_nsect = ((size + 511) & ~511) / 512;
// Current lba address, offset by the first sector already read
uint32_t lba = KERN_START_SECT + offset / 512;
// Max 255 sectors at a time
while (rem_nsect) {
uint8_t nsect = rem_nsect > 255 ? 255 : rem_nsect;
ata_lba_read(lba, nsect, vaddr);
vaddr += nsect * 512;
rem_nsect -= nsect;
lba += nsect;
}
}
void *load_kernel(void) {
// ELF header buffer
uint8_t header_buf[SECTOR_SIZE];
// Read the first sector
ata_lba_read(KERN_START_SECT, 1, read_buf);
// Read the first sector (contains the ELF header)
ata_read_sector(header_buf, KERN_START_SECT);
const Elf32_Ehdr* header = (const Elf32_Ehdr*)read_buf;
// `elf_load()` returns the entry point
return elf_load(header_buf);
// Remaining data size, subtract the first 512B already read
uint32_t rem = total_header_size(header) - 512;
// Read the rest if necessary
if (rem)
read_sectors(read_buf+512, 512, rem);
elf_load(read_buf, read_sectors);
return (void *)header->e_entry;
}

169
configure vendored
View File

@@ -1,169 +0,0 @@
#!/usr/bin/env bash
set -euo pipefail
# Configuration
TARGET="i386-elf"
BINUTILS_VERSION="2.45"
GCC_VERSION="15.2.0"
# Paths
SCRIPT_PATH="$(realpath "${BASH_SOURCE[0]}")"
SCRIPT_DIR="$(dirname "$SCRIPT_PATH")"
PREFIX="$SCRIPT_DIR/cross"
SRC_DIR="$PREFIX/src"
BINUTILS_SRC="$SRC_DIR/binutils-$BINUTILS_VERSION"
BINUTILS_BUILD="$PREFIX/build-binutils"
GCC_SRC="$SRC_DIR/gcc-$GCC_VERSION"
GCC_BUILD="$PREFIX/build-gcc"
# Flags
DEBUG=0
HELP=0
# Parse arguments
for arg in "$@"; do
case "$arg" in
-h|--help)
HELP=1
;;
-d|--debug)
DEBUG=1
;;
*)
echo "Unknown option: $arg"
echo "Use -h or --help for usage information"
exit 1
;;
esac
done
# Show help
if [[ "$HELP" -eq 1 ]]; then
cat << EOF
Usage: $0 [OPTIONS]
Build a cross-compiler toolchain for $TARGET.
OPTIONS:
-h, --help Show this help message
-d, --debug Enable debug mode (set -x)
This script will:
1. Download binutils $BINUTILS_VERSION and GCC $GCC_VERSION
2. Build and install them to: $PREFIX
EOF
exit 0
fi
# Enable debug mode
if [[ "$DEBUG" -eq 1 ]]; then
set -x
fi
# Print configuration
cat << EOF
=== Build Configuration ===
Target : $TARGET
Prefix : $PREFIX
Binutils : $BINUTILS_VERSION
GCC : $GCC_VERSION
===========================
EOF
# Create directory structure
echo "Setting up directories..."
mkdir -p "$SRC_DIR"
# Download sources
cd "$SRC_DIR"
if [[ ! -d "$BINUTILS_SRC" ]]; then
echo "Downloading binutils $BINUTILS_VERSION..."
wget "https://ftp.gnu.org/gnu/binutils/binutils-$BINUTILS_VERSION.tar.gz"
echo "Extracting binutils..."
tar xf "binutils-$BINUTILS_VERSION.tar.gz"
rm "binutils-$BINUTILS_VERSION.tar.gz"
else
echo "Binutils source already exists, skipping download"
fi
if [[ ! -d "$GCC_SRC" ]]; then
echo "Downloading GCC $GCC_VERSION..."
wget "https://ftp.gnu.org/gnu/gcc/gcc-$GCC_VERSION/gcc-$GCC_VERSION.tar.gz"
echo "Extracting GCC..."
tar xf "gcc-$GCC_VERSION.tar.gz"
rm "gcc-$GCC_VERSION.tar.gz"
else
echo "GCC source already exists, skipping download"
fi
# Download GCC prerequisites
if [[ ! -d "$GCC_SRC/gmp" ]]; then
echo "Downloading GCC prerequisites..."
cd "$GCC_SRC"
./contrib/download_prerequisites
cd "$SRC_DIR"
else
echo "GCC prerequisites already downloaded, skipping"
fi
# Build binutils
if [[ ! -f "$PREFIX/bin/$TARGET-ld" ]]; then
echo "Building binutils..."
mkdir -p "$BINUTILS_BUILD"
cd "$BINUTILS_BUILD"
"$BINUTILS_SRC/configure" \
--target="$TARGET" \
--prefix="$PREFIX" \
--with-sysroot \
--disable-nls \
--disable-werror
make -j"$(nproc)"
make install
else
echo "Binutils already installed, skipping build"
fi
# Build GCC
if [[ ! -f "$PREFIX/bin/$TARGET-gcc" ]]; then
echo "Building GCC..."
mkdir -p "$GCC_BUILD"
cd "$GCC_BUILD"
"$GCC_SRC/configure" \
--target="$TARGET" \
--prefix="$PREFIX" \
--disable-nls \
--enable-languages=c \
--without-headers
make all-gcc -j"$(nproc)"
make all-target-libgcc -j"$(nproc)"
make install-gcc
make install-target-libgcc
else
echo "GCC already installed, skipping build"
fi
cd "$SCRIPT_DIR"
# Generate .build.env file
cat > .build.env << EOF
# Generated by configure on $(date)
# Source this file to add the cross-compiler toolchain to your PATH
export PATH="$PREFIX/bin:\$PATH"
EOF
echo ""
echo "=== Build Complete ==="
echo "Toolchain installed to: $PREFIX"
echo ""
echo "To use the toolchain, run:"
echo " source .build.env"
echo "======================"

View File

@@ -1,4 +1,4 @@
global ctx_switch
.global ctx_switch
; void ctx_switch(uint32_t **old_sp_ptr, uint32_t *new_sp);
; Arguments on stack (cdecl convention):

View File

@@ -2,98 +2,36 @@
#include "serial.h"
#include "terminal.h"
#include "utils.h"
#include "print.h"
// Helper to print a labeled decimal value
void print_val(const char* label, uint32_t val) {
char buf[12];
utoa(val, buf, 10);
terminal_write(label);
terminal_write(buf);
terminal_write(" ");
}
// Safely check if CPUID is supported by attempting to flip bit 21 of EFLAGS
int check_cpuid_supported() {
uint32_t f1, f2;
__asm__ volatile (
"pushfl\n\t"
"pushfl\n\t"
"popl %0\n\t"
"movl %0, %1\n\t"
"xorl $0x200000, %0\n\t"
"pushl %0\n\t"
"popfl\n\t"
"pushfl\n\t"
"popl %0\n\t"
"popfl\n\t"
: "=&r" (f1), "=&r" (f2));
return ((f1 ^ f2) & 0x200000) != 0;
void cpuid(uint32_t function, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) {
__asm__(
"cpuid"
: "=a"(*eax), "=b"(*ebx), "=c"(*ecx), "=d"(*edx)
: "a"(function)
);
}
void identify_cpu() {
if (!check_cpuid_supported()) {
terminal_write("CPUID not supported. Likely a 386 or early 486.\n");
return;
}
uint32_t eax, ebx, ecx, edx;
char vendor[13];
// Leaf 0: Vendor String & Max Leaf
cpuid(0, &eax, &ebx, &ecx, &edx);
uint32_t max_leaf = eax;
*(uint32_t *)&vendor[0] = ebx;
*(uint32_t *)&vendor[4] = edx;
*(uint32_t *)&vendor[8] = ecx;
vendor[12] = '\0';
terminal_write("Vendor: ");
terminal_write("CPU Vendor: ");
terminal_write(vendor);
terminal_write("\n");
// Leaf 1: Family, Model, Stepping
if (max_leaf >= 1) {
cpuid(1, &eax, &ebx, &ecx, &edx);
uint32_t stepping = eax & 0xF;
uint32_t model = (eax >> 4) & 0xF;
uint32_t family = (eax >> 8) & 0xF;
uint32_t type = (eax >> 12) & 0x3;
serial_write("CPU Vendor: ");
serial_write(vendor);
serial_write("\n");
// Handle Extended Family/Model (Required for Pentium 4 and newer)
if (family == 0xF) {
family += (eax >> 20) & 0xFF;
model += ((eax >> 16) & 0xF) << 4;
}
print_val("Family:", family);
print_val("Model:", model);
print_val("Step:", stepping);
terminal_write("\n");
}
// Leaf 2: Cache Descriptors
if (max_leaf >= 2) {
cpuid(2, &eax, &ebx, &ecx, &edx);
terminal_write("Cache Descriptors: ");
// Note: Leaf 2 returns a list of 1-byte descriptors in the registers.
// We look for common Intel ones:
uint32_t regs[4] = {eax, ebx, ecx, edx};
for (int i = 0; i < 4; i++) {
if (regs[i] & 0x80000000) continue; // Reserved bit
for (int j = 0; j < 4; j++) {
uint8_t desc = (regs[i] >> (j * 8)) & 0xFF;
if (desc == 0) continue;
// Example decoding for specific chips you mentioned:
if (desc == 0x06) terminal_write("8KB L1 I-Cache ");
if (desc == 0x0A) terminal_write("8KB L1 D-Cache ");
if (desc == 0x41) terminal_write("128KB L2 ");
if (desc == 0x43) terminal_write("512KB L2 ");
if (desc == 0x2C) terminal_write("32KB L1 D-Cache ");
}
}
terminal_write("\n");
}
terminal_write("CPUID max leaf: ");
print_hex(eax, false, false); // You must implement this (see below)
terminal_write("\n");
}

View File

@@ -2,42 +2,8 @@
#define CPU_H
#include <stdint.h>
#include <stdbool.h>
// Specific Intel Model Definitions for your targets
#define INTEL_FAM4_486_DX 0x00 // Also 0x01
#define INTEL_FAM4_486_SX 0x02
#define INTEL_FAM4_486_DX2 0x03
#define INTEL_FAM4_486_DX4 0x08
#define INTEL_FAM5_PENTIUM 0x01 // P5
#define INTEL_FAM5_PENTIUM_MMX 0x04 // P55C
#define INTEL_FAM6_PENTIUM_PRO 0x01 // P6
#define INTEL_FAM6_PENTIUM_II 0x05 // Deschutes
#define INTEL_FAM6_PENTIUM_III 0x07 // Katmai/Coppermine
#define INTEL_FAM15_P4_WILLY 0x00 // Willamette
#define INTEL_FAM15_P4_NORTH 0x02 // Northwood
#define INTEL_FAM15_P4_PRES 0x03 // Prescott
typedef struct {
char vendor[13];
uint32_t family;
uint32_t model;
uint32_t stepping;
uint32_t type;
uint32_t max_leaf;
// Feature flags (optional, but very helpful later)
bool has_fpu;
bool has_mmx;
bool has_sse;
} cpu_info_t;
// Function Prototypes
void cpuid(uint32_t leaf, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx);
bool cpu_check_cpuid_support(void);
void cpuid(uint32_t function, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx);
void identify_cpu(void);
// Helper to get the current CPU info after identification
cpu_info_t* cpu_get_info(void);
#endif // CPU_H

View File

@@ -15,16 +15,9 @@ static uint8_t g_sector_buffer[FAT12_SECTOR_SIZE];
static int k_memcmp(const void *s1, const void *s2, uint32_t n) {
const uint8_t *p1 = (const uint8_t *)s1;
const uint8_t *p2 = (const uint8_t *)s2;
for (uint32_t i = 0; i < n; i++) {
if (p1[i] != p2[i]) {
// Correct way to return the difference:
// If p1[i] > p2[i], returns positive.
// If p1[i] < p2[i], returns negative.
return (int)p1[i] - (int)p2[i];
}
if (p1[i] != p2[i]) return p1[i] - p2[i];
}
return 0;
}
@@ -189,8 +182,3 @@ uint32_t fat12_read(file_t *file, uint8_t *buffer, uint32_t bytes_to_read) {
return total_read;
}
int disk_read_sector(uint32_t lba, uint8_t *buffer) {
// For now, do nothing and return success
return 0;
}

View File

@@ -58,7 +58,7 @@ typedef struct {
// You must implement this in your disk driver (e.g., floppy.c)
// Returns 0 on success, non-zero on error.
int disk_read_sector(uint32_t lba, uint8_t *buffer);
extern int disk_read_sector(uint32_t lba, uint8_t *buffer);
void fat12_init();
file_t fat12_open(const char *filename);

View File

@@ -1,30 +1,18 @@
ENTRY(kmain)
PHDRS {
text PT_LOAD FLAGS(5); /* Read + Execute */
rodata PT_LOAD FLAGS(4); /* Read only */
data PT_LOAD FLAGS(6); /* Read + Write */
}
SECTIONS {
. = 1M;
.text : {
*(.text*)
} :text
.rodata : {
*(.rodata*)
} :rodata
.data : {
*(.data*)
} :data
}
.rodata : { *(.rodata*) }
.data : { *(.data*) }
.bss : {
*(.bss*)
*(COMMON)
} :data
}
.stack (NOLOAD) : {
. = ALIGN(4);

View File

@@ -1,6 +1,6 @@
#include "memory.h"
/* note: this is a stub, please use care as theres duplicate functions in utils implementation
/* note: this is a stub, please use care as theres duplicate functions in utils implementation
/* --------------------------------------------------------------------- *
* Helper: copy a single byte (used by both memcpy and memmove)
* --------------------------------------------------------------------- */
@@ -15,3 +15,124 @@ static inline void byte_copy_backward(uint8_t *dst, const uint8_t *src, size_t n
while (n--) *--dst = *--src;
}
/* --------------------------------------------------------------------- *
* memcpy no overlap allowed (behaviour undefined if overlap)
* --------------------------------------------------------------------- */
void *memcpy(void *restrict dst, const void *restrict src, size_t n)
{
uint8_t *d = (uint8_t *)dst;
const uint8_t *s = (const uint8_t *)src;
#if defined(MEMORY_OPTIMIZED)
/* Align destination to 4-byte boundary */
size_t align = (uintptr_t)d & 3U;
if (align) {
size_t head = 4 - align;
if (head > n) head = n;
byte_copy_forward(d, s, head);
d += head; s += head; n -= head;
}
/* 32-bit word copy safe because we already aligned dst */
{
uint32_t *d32 = (uint32_t *)d;
const uint32_t *s32 = (const uint32_t *)s;
size_t words = n / 4;
while (words--) *d32++ = *s32++;
d = (uint8_t *)d32;
s = (const uint8_t *)s32;
n &= 3;
}
#endif
byte_copy_forward(d, s, n);
return dst;
}
/* --------------------------------------------------------------------- *
* memmove handles overlapping regions correctly
* --------------------------------------------------------------------- */
void *memmove(void *dst, const void *src, size_t n)
{
uint8_t *d = (uint8_t *)dst;
const uint8_t *s = (const uint8_t *)src;
if (n == 0 || dst == src)
return dst;
if (d < s) { /* copy forward */
#if defined(MEMORY_OPTIMIZED)
/* Same fast path as memcpy when no overlap */
size_t align = (uintptr_t)d & 3U;
if (align) {
size_t head = 4 - align;
if (head > n) head = n;
byte_copy_forward(d, s, head);
d += head; s += head; n -= head;
}
{
uint32_t *d32 = (uint32_t *)d;
const uint32_t *s32 = (const uint32_t *)s;
size_t words = n / 4;
while (words--) *d32++ = *s32++;
d = (uint8_t *)d32;
s = (const uint8_t *)s32;
n &= 3;
}
#endif
byte_copy_forward(d, s, n);
} else { /* copy backward */
byte_copy_backward(d, s, n);
}
return dst;
}
/* --------------------------------------------------------------------- *
* memcmp lexicographical compare
* --------------------------------------------------------------------- */
int memcmp(const void *s1, const void *s2, size_t n)
{
const uint8_t *a = (const uint8_t *)s1;
const uint8_t *b = (const uint8_t *)s2;
#if defined(MEMORY_OPTIMIZED)
/* Align to 4-byte boundary */
size_t align = (uintptr_t)a & 3U;
if (align && align == ((uintptr_t)b & 3U)) {
size_t head = 4 - align;
if (head > n) head = n;
while (head--) {
int diff = *a++ - *b++;
if (diff) return diff;
}
n -= head;
}
{
const uint32_t *a32 = (const uint32_t *)a;
const uint32_t *b32 = (const uint32_t *)b;
size_t words = n / 4;
while (words--) {
uint32_t va = *a32++, vb = *b32++;
if (va != vb) {
/* byte-wise fallback for the differing word */
const uint8_t *pa = (const uint8_t *)(a32 - 1);
const uint8_t *pb = (const uint8_t *)(b32 - 1);
for (int i = 0; i < 4; ++i) {
int diff = pa[i] - pb[i];
if (diff) return diff;
}
}
}
a = (const uint8_t *)a32;
b = (const uint8_t *)b32;
n &= 3;
}
#endif
while (n--) {
int diff = *a++ - *b++;
if (diff) return diff;
}
return 0;
}

117
kernel/ps2.c Normal file
View File

@@ -0,0 +1,117 @@
#include "ps2.h"
/* --- Low Level I/O Helpers --- */
static inline void outb(uint16_t port, uint8_t val) {
asm volatile ("outb %0, %1" : : "a"(val), "Nd"(port));
}
static inline uint8_t inb(uint16_t port) {
uint8_t ret;
asm volatile ("inb %1, %0" : "=a"(ret) : "Nd"(port));
return ret;
}
/* --- Controller Synchronization --- */
// Wait until the controller is ready to receive a byte
static void ps2_wait_write() {
while (inb(PS2_STATUS_REG) & PS2_STATUS_INPUT);
}
// Wait until the controller has a byte for us to read
static void ps2_wait_read() {
while (!(inb(PS2_STATUS_REG) & PS2_STATUS_OUTPUT));
}
/* --- Initialization --- */
void ps2_write_device(uint8_t command) {
ps2_wait_write();
outb(PS2_DATA_PORT, command);
}
void ps2_write_mouse(uint8_t data) {
ps2_wait_write();
outb(PS2_COMMAND_REG, PS2_CMD_WRITE_MOUSE); // "Next byte goes to mouse"
ps2_wait_write();
outb(PS2_DATA_PORT, data);
}
void ps2_init(void) {
// 1. Disable Devices
ps2_wait_write();
outb(PS2_COMMAND_REG, PS2_CMD_DISABLE_KB);
ps2_wait_write();
outb(PS2_COMMAND_REG, PS2_CMD_DISABLE_MS);
// 2. Flush Output Buffer
while (inb(PS2_STATUS_REG) & PS2_STATUS_OUTPUT) {
inb(PS2_DATA_PORT);
}
// 3. Set Controller Configuration Byte
// Bit 0: KB Interrupt, Bit 1: Mouse Interrupt, Bit 6: Translation
ps2_wait_write();
outb(PS2_COMMAND_REG, PS2_CMD_READ_CONFIG);
ps2_wait_read();
uint8_t status = inb(PS2_DATA_PORT);
status |= (1 << 0) | (1 << 1); // Enable IRQ 1 and IRQ 12
ps2_wait_write();
outb(PS2_COMMAND_REG, PS2_CMD_WRITE_CONFIG);
ps2_wait_write();
outb(PS2_DATA_PORT, status);
// 4. Enable Devices
ps2_wait_write();
outb(PS2_COMMAND_REG, PS2_CMD_ENABLE_KB);
ps2_wait_write();
outb(PS2_COMMAND_REG, PS2_CMD_ENABLE_MS);
// 5. Initialize Mouse (The mouse won't send IRQs until you tell it to)
ps2_write_mouse(MOUSE_CMD_SET_DEFAULTS);
ps2_wait_read(); inb(PS2_DATA_PORT); // Read ACK (0xFA)
ps2_write_mouse(MOUSE_CMD_ENABLE_SCAN);
ps2_wait_read(); inb(PS2_DATA_PORT); // Read ACK (0xFA)
}
/* --- IRQ Handlers --- */
// Called from IRQ 1 (Keyboard)
void ps2_keyboard_handler(void) {
uint8_t scancode = inb(PS2_DATA_PORT);
// Process scancode (e.g., put it into a circular buffer)
}
// Called from IRQ 12 (Mouse)
static uint8_t mouse_cycle = 0;
static uint8_t mouse_bytes[3];
void ps2_mouse_handler(void) {
uint8_t status = inb(PS2_STATUS_REG);
// Ensure this is actually mouse data
if (!(status & PS2_STATUS_MOUSE)) return;
mouse_bytes[mouse_cycle++] = inb(PS2_DATA_PORT);
if (mouse_cycle == 3) {
mouse_cycle = 0;
// Byte 0: Flags (Buttons, Signs)
// Byte 1: X Delta
// Byte 2: Y Delta
mouse_state_t state;
state.left_button = (mouse_bytes[0] & 0x01);
state.right_button = (mouse_bytes[0] & 0x02);
state.middle_button = (mouse_bytes[0] & 0x04);
// Handle negative deltas (signed 9-bit logic)
state.x_delta = (int8_t)mouse_bytes[1];
state.y_delta = (int8_t)mouse_bytes[2];
// Update your kernel's internal mouse position here
}
}

45
kernel/ps2.h Normal file
View File

@@ -0,0 +1,45 @@
#ifndef PS2_H
#define PS2_H
#include <stdint.h>
#include <stdbool.h>
/* I/O Ports */
#define PS2_DATA_PORT 0x60
#define PS2_STATUS_REG 0x64
#define PS2_COMMAND_REG 0x64
/* Status Register Bits */
#define PS2_STATUS_OUTPUT 0x01 // 1 = Data ready to be read
#define PS2_STATUS_INPUT 0x02 // 1 = Controller busy, don't write yet
#define PS2_STATUS_SYS 0x04 // System flag
#define PS2_STATUS_CMD_DATA 0x08 // 0 = Data written to 0x60, 1 = Cmd to 0x64
#define PS2_STATUS_MOUSE 0x20 // 1 = Mouse data, 0 = Keyboard data
/* Controller Commands */
#define PS2_CMD_READ_CONFIG 0x20
#define PS2_CMD_WRITE_CONFIG 0x60
#define PS2_CMD_DISABLE_MS 0xA7
#define PS2_CMD_ENABLE_MS 0xA8
#define PS2_CMD_DISABLE_KB 0xAD
#define PS2_CMD_ENABLE_KB 0xAE
#define PS2_CMD_WRITE_MOUSE 0xD4
/* Mouse Commands */
#define MOUSE_CMD_SET_DEFAULTS 0xF6
#define MOUSE_CMD_ENABLE_SCAN 0xF4
typedef struct {
int8_t x_delta;
int8_t y_delta;
bool left_button;
bool right_button;
bool middle_button;
} mouse_state_t;
/* Public API */
void ps2_init(void);
void ps2_keyboard_handler(void);
void ps2_mouse_handler(void);
#endif

View File

@@ -27,6 +27,7 @@ typedef enum { false = 0, true = 1 } bool;
// ----------------------------
// OS subsystem types
// ----------------------------
typedef uint32_t size_t;
typedef int32_t ssize_t;
typedef uint32_t phys_addr_t; // Physical address

View File

@@ -76,3 +76,10 @@ char* utoa(unsigned int value, char* str, int base) {
reverse(str, i);
return str;
}
void *memset(void *dest, int value, size_t len) {
unsigned char *ptr = (unsigned char *)dest;
while (len-- > 0)
*ptr++ = (unsigned char)value;
return dest;
}

View File

@@ -1,8 +1,6 @@
#ifndef UTILS_H
#define UTILS_H
#include <stddef.h>
#include "types.h"
// Convert integer to string (base is typically 10, 16, etc.)

View File

@@ -1,14 +0,0 @@
#ifndef CLASSICOS_KLIBC_STDARG_H
#define CLASSICOS_KLIBC_STDARG_H
typedef __builtin_va_list va_list;
#ifndef va_start
#define va_start(ap, param) __builtin_va_start(ap, param)
#endif
#define va_end(ap) __builtin_va_end(ap)
#define va_arg(ap, type) __builtin_va_arg(ap, type)
#define va_copy(dest, src) __builtin_va_copy(dest, src)
#endif // CLASSICOS_KLIBC_STDARG_H

View File

@@ -1,6 +0,0 @@
#ifndef CLASSICOS_KLIBC_STDBOOL_H
#define CLASSICOS_KLIBC_STDBOOL_H
typedef enum { false = 0, true = 1 } bool;
#endif // CLASSICOS_KLIBC_STDBOOL_H

View File

@@ -1,10 +0,0 @@
#ifndef CLASSICOS_KLIBC_STDDEF_H
#define CLASSICOS_KLIBC_STDDEF_H
typedef __SIZE_TYPE__ size_t;
typedef __PTRDIFF_TYPE__ ptrdiff_t;
#undef NULL
#define NULL ((void*)0)
#endif // CLASSICOS_KLIBC_STDDEF_H

View File

@@ -1,16 +0,0 @@
#ifndef CLASSICOS_KLIBC_STDINT_H
#define CLASSICOS_KLIBC_STDINT_H
typedef signed char int8_t;
typedef short int int16_t;
typedef int int32_t;
typedef long long int int64_t;
typedef unsigned char uint8_t;
typedef unsigned short int uint16_t;
typedef unsigned int uint32_t;
typedef unsigned long long int uint64_t;
typedef unsigned int uintptr_t;
#endif // CLASSICOS_KLIBC_STDINT_H

View File

@@ -1,4 +0,0 @@
#ifndef CLASSICOS_KLIBC_STDIO_H
#define CLASSICOS_KLIBC_STDIO_H
#endif // CLASSICOS_KLIBC_STDIO_H

View File

@@ -1,4 +0,0 @@
#ifndef CLASSICOS_KLIBC_STDLIB_H
#define CLASSICOS_KLIBC_STDLIB_H
#endif // CLASSICOS_KLIBC_STDLIB_H

View File

@@ -1,14 +0,0 @@
#ifndef CLASSICOS_KLIBC_STRING_H
#define CLASSICOS_KLIBC_STRING_H
#include <stddef.h>
extern int memcmp(const void* s1, const void* s2, size_t n);
extern void* memmove(void* dst, const void* src, size_t n);
extern void* memcpy(void* dst, const void* src, size_t n);
extern void* memset(void* dst, int c, size_t n);
extern size_t strlen(const char* s);
extern int strcmp(const char* s1, const char* s2);
#endif // CLASSICOS_KLIBC_STRING_H

View File

@@ -1,107 +0,0 @@
#include <string.h>
int memcmp(const void* s1, const void* s2, size_t n) {
const unsigned char* c1 = s1;
const unsigned char* c2 = s2;
int d = 0;
while (n--) {
d = (int)*c1++ - (int)*c2++;
if (d) break;
}
return d;
}
void* memmove(void* dst, const void* src, size_t n) {
const char* p = src;
char* q = dst;
#if defined(__i386__) || defined(__x86_64__)
if (q < p) {
__asm__ volatile("cld; rep; movsb" : "+c"(n), "+S"(p), "+D"(q));
} else {
p += (n - 1);
q += (n - 1);
__asm__ volatile("std; rep; movsb; cld" : "+c"(n), "+S"(p), "+D"(q));
}
#else
if (q < p) {
while (n--) {
*q++ = *p++;
}
} else {
p += n;
q += n;
while (n--) {
*--q = *--p;
}
}
#endif
return dst;
}
void* memcpy(void* dst, const void* src, size_t n) {
const char* p = src;
char* q = dst;
#if defined(__i386__)
size_t nl = n >> 2;
__asm__ volatile("cld ; rep ; movsl ; movl %3,%0 ; rep ; movsb"
: "+c"(nl), "+S"(p), "+D"(q)
: "r"(n & 3));
#elif defined(__x86_64__)
size_t nq = n >> 3;
__asm__ volatile("cld ; rep ; movsq ; movl %3,%%ecx ; rep ; movsb"
: "+c"(nq), "+S"(p), "+D"(q)
: "r"((uint32_t)(n & 7)));
#else
while (n--) {
*q++ = *p++;
}
#endif
return dst;
}
void* memset(void* dst, int c, size_t n) {
char* q = dst;
#if defined(__i386__)
size_t nl = n >> 2;
__asm__ volatile("cld ; rep ; stosl ; movl %3,%0 ; rep ; stosb"
: "+c"(nl), "+D"(q)
: "a"((unsigned char)c * 0x01010101U), "r"(n & 3));
#elif defined(__x86_64__)
size_t nq = n >> 3;
__asm__ volatile("cld ; rep ; stosq ; movl %3,%%ecx ; rep ; stosb"
: "+c"(nq), "+D"(q)
: "a"((unsigned char)c * 0x0101010101010101U),
"r"((uint32_t)n & 7));
#else
while (n--) {
*q++ = c;
}
#endif
return dst;
}
size_t strlen(const char* s) {
const char* ss = s;
while (*ss) ss++;
return ss - s;
}
int strcmp(const char* s1, const char* s2) {
const unsigned char* c1 = (const unsigned char*)s1;
const unsigned char* c2 = (const unsigned char*)s2;
unsigned char ch;
int d = 0;
while (1) {
d = (int)(ch = *c1++) - (int)*c2++;
if (d || !ch) break;
}
return d;
}