2 Commits

Author SHA1 Message Date
4e8b13ad77 Create ps2.c
add initial ps/2 driver code. This will need wired up to be used
2025-12-17 05:50:02 -08:00
9f8ca3a60c Create ps2.h 2025-12-17 05:47:59 -08:00
39 changed files with 586 additions and 976 deletions

View File

@@ -1,24 +0,0 @@
BasedOnStyle: Google
IndentWidth: 4
TabWidth: 4
UseTab: Never
ColumnLimit: 80
DerivePointerAlignment: false
PointerAlignment: Right
ReferenceAlignment: Right
AlignConsecutiveMacros: Consecutive
AlignTrailingComments:
Kind: Always
OverEmptyLines: 0
IncludeBlocks: Regroup
IncludeCategories:
# Std headers
- Regex: '<[[:alnum:]_.]+>'
Priority: 2
# Other headers
- Regex: '.*'
Priority: 1

View File

@@ -1,6 +0,0 @@
CompileFlags:
CompilationDatabase: build
Diagnostics:
UnusedIncludes: Strict
MissingIncludes: Strict

View File

@@ -1,12 +0,0 @@
root = true
[*]
charset = utf-8
end_of_line = lf
insert_final_newline = true
trim_trailing_whitespace = true
[Makefile]
indent_style = tab
indent_size = 8
tab_width = 8

4
.gitignore vendored
View File

@@ -1,5 +1 @@
.build.env
build build
cross
.cache/
compile_commands.json

View File

@@ -1,12 +1,10 @@
AS = nasm AS = nasm
ASFLAGS = -f elf32 -g -F dwarf ASFLAGS = -f elf32 -g -F dwarf
CC = i386-elf-gcc CC = gcc
LD = i386-elf-ld LD = ld
QEMU= qemu-system-i386 QEMU= qemu-system-i386
OBJCOPY = i386-elf-objcopy
BUILD_DIR = build BUILD_DIR = build
CROSS_DIR = cross
DISK_IMG = $(BUILD_DIR)/disk.img DISK_IMG = $(BUILD_DIR)/disk.img
STAGE2_SIZE = 2048 STAGE2_SIZE = 2048
@@ -15,37 +13,31 @@ KERNEL_ASM_SRC = $(wildcard kernel/*.asm)
KERNEL_OBJ = $(patsubst kernel/%.c, $(BUILD_DIR)/%.o, $(KERNEL_C_SRC)) KERNEL_OBJ = $(patsubst kernel/%.c, $(BUILD_DIR)/%.o, $(KERNEL_C_SRC))
KERNEL_OBJ += $(patsubst kernel/%.asm, $(BUILD_DIR)/asm_%.o, $(KERNEL_ASM_SRC)) KERNEL_OBJ += $(patsubst kernel/%.asm, $(BUILD_DIR)/asm_%.o, $(KERNEL_ASM_SRC))
KLIBC_SRC = $(wildcard klibc/src/*.c)
KLIBC_OBJ = $(patsubst klibc/src/%.c, $(BUILD_DIR)/klibc/%.o, $(KLIBC_SRC))
.PHONY: all stage1 stage2 kernel compile-commands $(BUILD_DIR)/compile_commands.json run gdb clean clean-cross clean-all
all: $(DISK_IMG) all: $(DISK_IMG)
.PHONY: stage1 stage2 kernel run gdb clean
stage1: $(BUILD_DIR) stage1: $(BUILD_DIR)
$(AS) $(ASFLAGS) -o $(BUILD_DIR)/$@.o bootloader/$@.asm $(AS) $(ASFLAGS) -o $(BUILD_DIR)/$@.o bootloader/$@.asm
$(LD) -Ttext=0x7c00 -melf_i386 -o $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.o $(LD) -Ttext=0x7c00 -melf_i386 -o $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.o
$(OBJCOPY) -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin objcopy -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin
# NOTE: Stage2 final size should be checked against `$(STAGE2_SIZE)` by the build system to avoid an overflow. # NOTE: Stage2 final size should be checked against `$(STAGE2_SIZE)` by the build system to avoid an overflow.
# Alternatively, convey the final stage2 size through other means to stage1. # Alternatively, convey the final stage2 size through other means to stage1.
stage2: $(BUILD_DIR) stage2: $(BUILD_DIR)
$(AS) $(ASFLAGS) -o $(BUILD_DIR)/stage2.o bootloader/stage2.asm $(AS) $(ASFLAGS) -o $(BUILD_DIR)/stage2.o bootloader/stage2.asm
$(CC) -std=c11 -ffreestanding -nostdlib -nostdinc -fno-stack-protector -m32 -Iklibc/include -g -c -o $(BUILD_DIR)/stage2_load.o bootloader/stage2_load.c $(CC) -std=c11 -ffreestanding -nostdlib -fno-stack-protector -m32 -g -c -o $(BUILD_DIR)/stage2_load.o bootloader/stage2_load.c
$(LD) -Tbootloader/stage2.ld -melf_i386 -o $(BUILD_DIR)/$@.elf $(BUILD_DIR)/stage2.o $(BUILD_DIR)/stage2_load.o $(LD) -Tbootloader/stage2.ld -melf_i386 -o $(BUILD_DIR)/$@.elf $(BUILD_DIR)/stage2.o $(BUILD_DIR)/stage2_load.o
$(OBJCOPY) -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin objcopy -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin
truncate -s $(STAGE2_SIZE) $(BUILD_DIR)/$@.bin truncate -s $(STAGE2_SIZE) $(BUILD_DIR)/$@.bin
$(BUILD_DIR)/asm_%.o: kernel/%.asm $(BUILD_DIR)/asm_%.o: kernel/%.asm
$(AS) $(ASFLAGS) -o $@ $< $(AS) $(ASFLAGS) -o $@ $<
$(BUILD_DIR)/%.o: kernel/%.c $(BUILD_DIR)/%.o: kernel/%.c
$(CC) -std=c11 -ffreestanding -nostdlib -nostdinc -fno-stack-protector -m32 -Iklibc/include -g -c -o $@ $< $(CC) -std=c11 -ffreestanding -nostdlib -fno-stack-protector -m32 -g -c -o $@ $<
$(BUILD_DIR)/klibc/%.o: klibc/src/%.c kernel: $(KERNEL_OBJ) | $(BUILD_DIR)
$(CC) -std=c11 -ffreestanding -nostdlib -nostdinc -fno-stack-protector -m32 -Iklibc/include -g -c -o $@ $< $(LD) -melf_i386 -Tkernel/linker.ld -o $(BUILD_DIR)/kernel.elf $(KERNEL_OBJ)
kernel: $(KERNEL_OBJ) | $(BUILD_DIR) $(KLIBC_OBJ)
$(LD) -melf_i386 -Tkernel/linker.ld -o $(BUILD_DIR)/kernel.elf $(KERNEL_OBJ) $(KLIBC_OBJ)
$(DISK_IMG): stage1 stage2 kernel $(DISK_IMG): stage1 stage2 kernel
dd if=$(BUILD_DIR)/stage1.bin of=$@ dd if=$(BUILD_DIR)/stage1.bin of=$@
@@ -55,11 +47,6 @@ $(DISK_IMG): stage1 stage2 kernel
$(BUILD_DIR): $(BUILD_DIR):
mkdir -p $@ mkdir -p $@
mkdir -p $(BUILD_DIR)/klibc
compile-commands: $(BUILD_DIR)/compile_commands.json
$(BUILD_DIR)/compile_commands.json: $(BUILD_DIR)
bear --output $@ -- make -B
run: run:
qemu-system-i386 -s -S $(DISK_IMG) qemu-system-i386 -s -S $(DISK_IMG)
@@ -69,9 +56,3 @@ gdb:
clean: clean:
rm -rf $(BUILD_DIR) rm -rf $(BUILD_DIR)
clean-cross:
rm -rf $(CROSS_DIR)
rm -rf .build.env
clean-all: clean clean-cross

View File

@@ -35,7 +35,6 @@ Youll need the following tools installed:
- `qemu-system-i386` - `qemu-system-i386`
Optional: Optional:
- `gdb` - `gdb`
- `vncviewer` (TigerVNC or similar) - `vncviewer` (TigerVNC or similar)
@@ -43,27 +42,13 @@ Optional:
## 🛠️ Building ClassicOS ## 🛠️ Building ClassicOS
Clone repository: Clone and build:
```sh ```bash
git clone https://github.com/gbowne1/ClassicOS.git git clone https://github.com/gbowne1/ClassicOS.git
cd ClassicOS cd ClassicOS
```
Run `configure` script to build a cross-compiler toolchain for `i386-elf`:
```sh
./configure
```
Source the `.build.env` file to add the cross-compiler toolchain to your PATH:
```sh
source .build.env
```
Build the kernel:
```sh
make make
``` ```
build kernel
for %f in (*.c) do gcc -m32 -O0 -Wall -Wextra -Werror -pedantic -ffreestanding -nostdlib -fno-pic -fno-stack-protector -fno-pie -march=i386 -mtune=i386 -c "%f" -o "%f.o"

View File

@@ -24,3 +24,75 @@ _start:
call load_kernel call load_kernel
jmp eax jmp eax
; ----------------------------------------------------------------------------
; ATA read sectors (LBA mode)
;
; sysv32 abi signature:
; void ata_lba_read(uint32_t lba, uint8_t nsect, void *addr);
; ----------------------------------------------------------------------------
ata_lba_read:
push ebp
mov ebp, esp
push ebx
push ecx
push edx
push edi
mov eax, [ebp+8] ; arg #1 = LBA
mov cl, [ebp+12] ; arg #2 = # of sectors
mov edi, [ebp+16] ; arg #3 = buffer address
and eax, 0x0FFFFFFF
mov ebx, eax ; Save LBA in RBX
mov edx, 0x01F6 ; Port to send drive and bit 24 - 27 of LBA
shr eax, 24 ; Get bit 24 - 27 in al
or al, 11100000b ; Set bit 6 in al for LBA mode
out dx, al
mov edx, 0x01F2 ; Port to send number of sectors
mov al, cl ; Get number of sectors from CL
out dx, al
mov edx, 0x1F3 ; Port to send bit 0 - 7 of LBA
mov eax, ebx ; Get LBA from EBX
out dx, al
mov edx, 0x1F4 ; Port to send bit 8 - 15 of LBA
mov eax, ebx ; Get LBA from EBX
shr eax, 8 ; Get bit 8 - 15 in AL
out dx, al
mov edx, 0x1F5 ; Port to send bit 16 - 23 of LBA
mov eax, ebx ; Get LBA from EBX
shr eax, 16 ; Get bit 16 - 23 in AL
out dx, al
mov edx, 0x1F7 ; Command port
mov al, 0x20 ; Read with retry.
out dx, al
mov bl, cl ; Save # of sectors in BL
.wait_drq:
mov edx, 0x1F7
.do_wait_drq:
in al, dx
test al, 8 ; the sector buffer requires servicing.
jz .do_wait_drq ; keep polling until the sector buffer is ready.
mov edx, 0x1F0 ; Data port, in and out
mov ecx, 256
rep insw ; in to [RDI]
dec bl ; are we...
jnz .wait_drq ; ...done?
pop edi
pop edx
pop ecx
pop ebx
pop ebp
ret

View File

@@ -9,4 +9,6 @@ SECTIONS {
*(.bss*) *(.bss*)
*(COMMON) *(COMMON)
} }
read_buf = .;
} }

View File

@@ -1,20 +1,5 @@
#include <stddef.h>
#include <stdint.h> #include <stdint.h>
// ATA IO Ports
#define ATA_PRIMARY_DATA 0x1F0
#define ATA_PRIMARY_ERR_FEATURES 0x1F1
#define ATA_PRIMARY_SEC_COUNT 0x1F2
#define ATA_PRIMARY_LBA_LOW 0x1F3
#define ATA_PRIMARY_LBA_MID 0x1F4
#define ATA_PRIMARY_LBA_HIGH 0x1F5
#define ATA_PRIMARY_DRIVE_SEL 0x1F6
#define ATA_PRIMARY_COMM_STAT 0x1F7
// ATA Commands
#define ATA_CMD_READ_PIO 0x20
#define ATA_CMD_WRITE_PIO 0x30
// ELF Ident indexes // ELF Ident indexes
#define EI_NIDENT 16 #define EI_NIDENT 16
@@ -22,19 +7,6 @@
#define PT_NULL 0 #define PT_NULL 0
#define PT_LOAD 1 #define PT_LOAD 1
// Disk sector size
#define SECTOR_SIZE 512
#define PH_PER_SECTOR (SECTOR_SIZE / sizeof(Elf32_Phdr))
// Kernel start LBA
#define KERN_START_SECT 5
// VGA
// Expects bios initialization for text mode (3), buffer at 0xb8000
#define VGA_ADDRESS 0xB8000
#define VGA_COLS 80
#define VGA_ROWS 25
// ELF Header (32-bit) // ELF Header (32-bit)
typedef struct { typedef struct {
uint8_t e_ident[EI_NIDENT]; uint8_t e_ident[EI_NIDENT];
@@ -65,171 +37,82 @@ typedef struct {
uint32_t p_align; uint32_t p_align;
} __attribute__((packed)) Elf32_Phdr; } __attribute__((packed)) Elf32_Phdr;
static inline uint8_t inb(uint16_t port)
{
uint8_t ret;
__asm__ volatile ("inb %1, %0"
: "=a"(ret)
: "Nd"(port));
return ret;
}
static inline void outb(uint16_t port, uint8_t val)
{
__asm__ volatile ("outb %0, %1"
:
: "a"(val), "Nd"(port));
}
static inline uint16_t inw(uint16_t port)
{
uint16_t ret;
__asm__ volatile ("inw %1, %0"
: "=a"(ret)
: "Nd"(port));
return ret;
}
static inline void ata_wait_bsy() {
while (inb(ATA_PRIMARY_COMM_STAT) & 0x80);
}
static inline void ata_wait_drq() {
while (!(inb(ATA_PRIMARY_COMM_STAT) & 0x08));
}
static void ata_read_sector(void *addr, uint32_t lba) {
ata_wait_bsy();
outb(ATA_PRIMARY_DRIVE_SEL, 0xE0 | ((lba >> 24) & 0x0F));
outb(ATA_PRIMARY_SEC_COUNT, 1);
outb(ATA_PRIMARY_LBA_LOW, (uint8_t)lba);
outb(ATA_PRIMARY_LBA_MID, (uint8_t)(lba >> 8));
outb(ATA_PRIMARY_LBA_HIGH, (uint8_t)(lba >> 16));
outb(ATA_PRIMARY_COMM_STAT, ATA_CMD_READ_PIO);
uint16_t* ptr = (uint16_t*)addr;
ata_wait_bsy();
ata_wait_drq();
for (int i = 0; i < 256; i++) {
*ptr++ = inw(ATA_PRIMARY_DATA);
}
}
static void ata_read_sectors(uint8_t *addr, uint32_t offset, uint32_t size)
{
// Reads are offset from the starting sector of the kernel
uint32_t lba = KERN_START_SECT + offset / SECTOR_SIZE;
uint32_t off = offset % 512;
uint8_t data[512];
while (size > 0) {
ata_read_sector(data, lba);
uint32_t copy = 512 - off;
if (copy > size) {
copy = size;
}
for (uint32_t i = 0; i < copy; i++) {
addr[i] = data[off + i];
}
addr += copy;
size -= copy;
lba++;
off = 0;
}
}
static void on_error(const char *msg)
{
uint16_t *ptr = (uint16_t *)VGA_ADDRESS;
// Clear
uint16_t val = 0x0f00 | (uint8_t)' ';
for (size_t i = 0; i < VGA_COLS * VGA_ROWS; i++) {
ptr[i] = val;
}
// Print error
for (size_t i = 0; msg[i]; i++) {
ptr[i] = 0xf00 | (uint8_t)msg[i];
}
// Halt
while (1) {
__asm__("hlt");
}
}
// Load an ELF executable into memory. // Load an ELF executable into memory.
// NOTE: Only 32-byte program headers are supported. static int elf_load(const void* data, void (*load_segment)(uint8_t *vaddr, uint32_t src, uint32_t size)) {
// Returns the entry point to the program. const Elf32_Ehdr* header = (const Elf32_Ehdr*)data;
static void *elf_load(const void *data) { const Elf32_Phdr* ph = (const Elf32_Phdr*)((uint8_t*)data + header->e_phoff);
const Elf32_Ehdr *header = (const Elf32_Ehdr*)data;
if (header->e_phentsize != sizeof(Elf32_Phdr)) {
// The bootloader only handles 32-byte program header entries
on_error("ERROR: Unsupported program header entry size, halting...");
}
// Buffer for the program headers
uint8_t file_buf[SECTOR_SIZE];
// Current file offset to the next program header
uint32_t file_offset = header->e_phoff;
for (int i = 0; i < header->e_phnum; i++) { for (int i = 0; i < header->e_phnum; i++) {
// Check for sector boundary. if (ph[i].p_type != PT_LOAD)
// Program headers are read in a sector at a time
// 512 / 32 = 16 PH per sector
if (i % PH_PER_SECTOR == 0) {
uint32_t count = (header->e_phnum - i) * sizeof(Elf32_Phdr);
if (count > SECTOR_SIZE) {
count = SECTOR_SIZE;
}
// Reads
ata_read_sectors(file_buf, file_offset, count);
file_offset += count;
}
// PH being processed currently, index mod 16 as headers
// are being loaded in sector by sector.
const Elf32_Phdr *ph = (const Elf32_Phdr *)file_buf + (i % PH_PER_SECTOR);
// Discard non-load segments
if (ph->p_type != PT_LOAD)
continue; continue;
// Load in the segment uint32_t offset = ph[i].p_offset;
uint32_t offset = ph->p_offset; uint32_t vaddr = ph[i].p_vaddr;
uint32_t filesz = ph->p_filesz; uint32_t filesz = ph[i].p_filesz;
uint32_t memsz = ph->p_memsz; uint32_t memsz = ph[i].p_memsz;
uint8_t *vaddr = (uint8_t *)ph->p_vaddr;
ata_read_sectors(vaddr, offset, filesz); // Copy data segment
//load_segment((uint8_t *)vaddr, offset, filesz);
load_segment((uint8_t *)vaddr, offset, filesz);
// Zero remaining BSS (if any) // Zero remaining BSS (if any)
if (memsz > filesz) { if (memsz > filesz) {
uint8_t* bss_start = vaddr + filesz; uint8_t* bss_start = (uint8_t*)(vaddr + filesz);
for (uint32_t j = 0; j < memsz - filesz; j++) { for (uint32_t j = 0; j < memsz - filesz; j++) {
bss_start[j] = 0; bss_start[j] = 0;
} }
} }
} }
// Return the entry point return header->e_entry;
return (void *)header->e_entry; }
#define KERN_START_SECT 5
#define MAX(a, b) ((a)>(b) ? (a) : (b))
extern void ata_lba_read(uint32_t lba, uint8_t nsect, void *addr);
extern uint8_t read_buf[];
static uint32_t
total_header_size(const Elf32_Ehdr *header) {
uint32_t phend = header->e_phoff + header->e_phentsize*header->e_phnum;
// Align to 512
return (phend + 511) & ~511;
}
static void read_sectors(uint8_t *vaddr, uint32_t offset, uint32_t size) {
// # of sectors to read
uint32_t rem_nsect = ((size + 511) & ~511) / 512;
// Current lba address, offset by the first sector already read
uint32_t lba = KERN_START_SECT + offset / 512;
// Max 255 sectors at a time
while (rem_nsect) {
uint8_t nsect = rem_nsect > 255 ? 255 : rem_nsect;
ata_lba_read(lba, nsect, vaddr);
vaddr += nsect * 512;
rem_nsect -= nsect;
lba += nsect;
}
} }
void *load_kernel(void) { void *load_kernel(void) {
// ELF header buffer // Read the first sector
uint8_t header_buf[SECTOR_SIZE]; ata_lba_read(KERN_START_SECT, 1, read_buf);
// Read the first sector (contains the ELF header) const Elf32_Ehdr* header = (const Elf32_Ehdr*)read_buf;
ata_read_sector(header_buf, KERN_START_SECT);
// `elf_load()` returns the entry point // Remaining data size, subtract the first 512B already read
return elf_load(header_buf); uint32_t rem = total_header_size(header) - 512;
// Read the rest if necessary
if (rem)
read_sectors(read_buf+512, 512, rem);
elf_load(read_buf, read_sectors);
return (void *)header->e_entry;
} }

169
configure vendored
View File

@@ -1,169 +0,0 @@
#!/usr/bin/env bash
set -euo pipefail
# Configuration
TARGET="i386-elf"
BINUTILS_VERSION="2.45"
GCC_VERSION="15.2.0"
# Paths
SCRIPT_PATH="$(realpath "${BASH_SOURCE[0]}")"
SCRIPT_DIR="$(dirname "$SCRIPT_PATH")"
PREFIX="$SCRIPT_DIR/cross"
SRC_DIR="$PREFIX/src"
BINUTILS_SRC="$SRC_DIR/binutils-$BINUTILS_VERSION"
BINUTILS_BUILD="$PREFIX/build-binutils"
GCC_SRC="$SRC_DIR/gcc-$GCC_VERSION"
GCC_BUILD="$PREFIX/build-gcc"
# Flags
DEBUG=0
HELP=0
# Parse arguments
for arg in "$@"; do
case "$arg" in
-h|--help)
HELP=1
;;
-d|--debug)
DEBUG=1
;;
*)
echo "Unknown option: $arg"
echo "Use -h or --help for usage information"
exit 1
;;
esac
done
# Show help
if [[ "$HELP" -eq 1 ]]; then
cat << EOF
Usage: $0 [OPTIONS]
Build a cross-compiler toolchain for $TARGET.
OPTIONS:
-h, --help Show this help message
-d, --debug Enable debug mode (set -x)
This script will:
1. Download binutils $BINUTILS_VERSION and GCC $GCC_VERSION
2. Build and install them to: $PREFIX
EOF
exit 0
fi
# Enable debug mode
if [[ "$DEBUG" -eq 1 ]]; then
set -x
fi
# Print configuration
cat << EOF
=== Build Configuration ===
Target : $TARGET
Prefix : $PREFIX
Binutils : $BINUTILS_VERSION
GCC : $GCC_VERSION
===========================
EOF
# Create directory structure
echo "Setting up directories..."
mkdir -p "$SRC_DIR"
# Download sources
cd "$SRC_DIR"
if [[ ! -d "$BINUTILS_SRC" ]]; then
echo "Downloading binutils $BINUTILS_VERSION..."
wget "https://ftp.gnu.org/gnu/binutils/binutils-$BINUTILS_VERSION.tar.gz"
echo "Extracting binutils..."
tar xf "binutils-$BINUTILS_VERSION.tar.gz"
rm "binutils-$BINUTILS_VERSION.tar.gz"
else
echo "Binutils source already exists, skipping download"
fi
if [[ ! -d "$GCC_SRC" ]]; then
echo "Downloading GCC $GCC_VERSION..."
wget "https://ftp.gnu.org/gnu/gcc/gcc-$GCC_VERSION/gcc-$GCC_VERSION.tar.gz"
echo "Extracting GCC..."
tar xf "gcc-$GCC_VERSION.tar.gz"
rm "gcc-$GCC_VERSION.tar.gz"
else
echo "GCC source already exists, skipping download"
fi
# Download GCC prerequisites
if [[ ! -d "$GCC_SRC/gmp" ]]; then
echo "Downloading GCC prerequisites..."
cd "$GCC_SRC"
./contrib/download_prerequisites
cd "$SRC_DIR"
else
echo "GCC prerequisites already downloaded, skipping"
fi
# Build binutils
if [[ ! -f "$PREFIX/bin/$TARGET-ld" ]]; then
echo "Building binutils..."
mkdir -p "$BINUTILS_BUILD"
cd "$BINUTILS_BUILD"
"$BINUTILS_SRC/configure" \
--target="$TARGET" \
--prefix="$PREFIX" \
--with-sysroot \
--disable-nls \
--disable-werror
make -j"$(nproc)"
make install
else
echo "Binutils already installed, skipping build"
fi
# Build GCC
if [[ ! -f "$PREFIX/bin/$TARGET-gcc" ]]; then
echo "Building GCC..."
mkdir -p "$GCC_BUILD"
cd "$GCC_BUILD"
"$GCC_SRC/configure" \
--target="$TARGET" \
--prefix="$PREFIX" \
--disable-nls \
--enable-languages=c \
--without-headers
make all-gcc -j"$(nproc)"
make all-target-libgcc -j"$(nproc)"
make install-gcc
make install-target-libgcc
else
echo "GCC already installed, skipping build"
fi
cd "$SCRIPT_DIR"
# Generate .build.env file
cat > .build.env << EOF
# Generated by configure on $(date)
# Source this file to add the cross-compiler toolchain to your PATH
export PATH="$PREFIX/bin:\$PATH"
EOF
echo ""
echo "=== Build Complete ==="
echo "Toolchain installed to: $PREFIX"
echo ""
echo "To use the toolchain, run:"
echo " source .build.env"
echo "======================"

View File

@@ -1,4 +1,4 @@
global ctx_switch .global ctx_switch
; void ctx_switch(uint32_t **old_sp_ptr, uint32_t *new_sp); ; void ctx_switch(uint32_t **old_sp_ptr, uint32_t *new_sp);
; Arguments on stack (cdecl convention): ; Arguments on stack (cdecl convention):

View File

@@ -2,106 +2,36 @@
#include "serial.h" #include "serial.h"
#include "terminal.h" #include "terminal.h"
#include "utils.h" #include "utils.h"
#include "print.h"
void cpuid(uint32_t leaf, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { void cpuid(uint32_t function, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) {
__asm__( __asm__(
"cpuid" "cpuid"
: "=a"(*eax), "=b"(*ebx), "=c"(*ecx), "=d"(*edx) : "=a"(*eax), "=b"(*ebx), "=c"(*ecx), "=d"(*edx)
: "a"(leaf) : "a"(function)
); );
} }
// Helper to print a labeled decimal value
void print_val(const char* label, uint32_t val) {
char buf[12];
utoa(val, buf, 10);
terminal_write(label);
terminal_write(buf);
terminal_write(" ");
}
// Safely check if CPUID is supported by attempting to flip bit 21 of EFLAGS
int check_cpuid_supported() {
uint32_t f1, f2;
__asm__ volatile (
"pushfl\n\t"
"pushfl\n\t"
"popl %0\n\t"
"movl %0, %1\n\t"
"xorl $0x200000, %0\n\t"
"pushl %0\n\t"
"popfl\n\t"
"pushfl\n\t"
"popl %0\n\t"
"popfl\n\t"
: "=&r" (f1), "=&r" (f2));
return ((f1 ^ f2) & 0x200000) != 0;
}
void identify_cpu() { void identify_cpu() {
if (!check_cpuid_supported()) {
terminal_write("CPUID not supported. Likely a 386 or early 486.\n");
return;
}
uint32_t eax, ebx, ecx, edx; uint32_t eax, ebx, ecx, edx;
char vendor[13]; char vendor[13];
// Leaf 0: Vendor String & Max Leaf
cpuid(0, &eax, &ebx, &ecx, &edx); cpuid(0, &eax, &ebx, &ecx, &edx);
uint32_t max_leaf = eax;
*(uint32_t *)&vendor[0] = ebx; *(uint32_t *)&vendor[0] = ebx;
*(uint32_t *)&vendor[4] = edx; *(uint32_t *)&vendor[4] = edx;
*(uint32_t *)&vendor[8] = ecx; *(uint32_t *)&vendor[8] = ecx;
vendor[12] = '\0'; vendor[12] = '\0';
terminal_write("Vendor: "); terminal_write("CPU Vendor: ");
terminal_write(vendor); terminal_write(vendor);
terminal_write("\n"); terminal_write("\n");
// Leaf 1: Family, Model, Stepping serial_write("CPU Vendor: ");
if (max_leaf >= 1) { serial_write(vendor);
cpuid(1, &eax, &ebx, &ecx, &edx); serial_write("\n");
uint32_t stepping = eax & 0xF; terminal_write("CPUID max leaf: ");
uint32_t model = (eax >> 4) & 0xF; print_hex(eax, false, false); // You must implement this (see below)
uint32_t family = (eax >> 8) & 0xF;
uint32_t type = (eax >> 12) & 0x3;
// Handle Extended Family/Model (Required for Pentium 4 and newer)
if (family == 0xF) {
family += (eax >> 20) & 0xFF;
model += ((eax >> 16) & 0xF) << 4;
}
print_val("Family:", family);
print_val("Model:", model);
print_val("Step:", stepping);
terminal_write("\n"); terminal_write("\n");
}
// Leaf 2: Cache Descriptors
if (max_leaf >= 2) {
cpuid(2, &eax, &ebx, &ecx, &edx);
terminal_write("Cache Descriptors: ");
// Note: Leaf 2 returns a list of 1-byte descriptors in the registers.
// We look for common Intel ones:
uint32_t regs[4] = {eax, ebx, ecx, edx};
for (int i = 0; i < 4; i++) {
if (regs[i] & 0x80000000) continue; // Reserved bit
for (int j = 0; j < 4; j++) {
uint8_t desc = (regs[i] >> (j * 8)) & 0xFF;
if (desc == 0) continue;
// Example decoding for specific chips you mentioned:
if (desc == 0x06) terminal_write("8KB L1 I-Cache ");
if (desc == 0x0A) terminal_write("8KB L1 D-Cache ");
if (desc == 0x41) terminal_write("128KB L2 ");
if (desc == 0x43) terminal_write("512KB L2 ");
if (desc == 0x2C) terminal_write("32KB L1 D-Cache ");
}
}
terminal_write("\n");
}
} }

View File

@@ -2,42 +2,8 @@
#define CPU_H #define CPU_H
#include <stdint.h> #include <stdint.h>
#include <stdbool.h>
// Specific Intel Model Definitions for your targets void cpuid(uint32_t function, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx);
#define INTEL_FAM4_486_DX 0x00 // Also 0x01
#define INTEL_FAM4_486_SX 0x02
#define INTEL_FAM4_486_DX2 0x03
#define INTEL_FAM4_486_DX4 0x08
#define INTEL_FAM5_PENTIUM 0x01 // P5
#define INTEL_FAM5_PENTIUM_MMX 0x04 // P55C
#define INTEL_FAM6_PENTIUM_PRO 0x01 // P6
#define INTEL_FAM6_PENTIUM_II 0x05 // Deschutes
#define INTEL_FAM6_PENTIUM_III 0x07 // Katmai/Coppermine
#define INTEL_FAM15_P4_WILLY 0x00 // Willamette
#define INTEL_FAM15_P4_NORTH 0x02 // Northwood
#define INTEL_FAM15_P4_PRES 0x03 // Prescott
typedef struct {
char vendor[13];
uint32_t family;
uint32_t model;
uint32_t stepping;
uint32_t type;
uint32_t max_leaf;
// Feature flags (optional, but very helpful later)
bool has_fpu;
bool has_mmx;
bool has_sse;
} cpu_info_t;
// Function Prototypes
void cpuid(uint32_t leaf, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx);
bool cpu_check_cpuid_support(void);
void identify_cpu(void); void identify_cpu(void);
// Helper to get the current CPU info after identification
cpu_info_t* cpu_get_info(void);
#endif // CPU_H #endif // CPU_H

View File

@@ -15,16 +15,9 @@ static uint8_t g_sector_buffer[FAT12_SECTOR_SIZE];
static int k_memcmp(const void *s1, const void *s2, uint32_t n) { static int k_memcmp(const void *s1, const void *s2, uint32_t n) {
const uint8_t *p1 = (const uint8_t *)s1; const uint8_t *p1 = (const uint8_t *)s1;
const uint8_t *p2 = (const uint8_t *)s2; const uint8_t *p2 = (const uint8_t *)s2;
for (uint32_t i = 0; i < n; i++) { for (uint32_t i = 0; i < n; i++) {
if (p1[i] != p2[i]) { if (p1[i] != p2[i]) return p1[i] - p2[i];
// Correct way to return the difference:
// If p1[i] > p2[i], returns positive.
// If p1[i] < p2[i], returns negative.
return (int)p1[i] - (int)p2[i];
} }
}
return 0; return 0;
} }
@@ -189,8 +182,3 @@ uint32_t fat12_read(file_t *file, uint8_t *buffer, uint32_t bytes_to_read) {
return total_read; return total_read;
} }
int disk_read_sector(uint32_t lba, uint8_t *buffer) {
// For now, do nothing and return success
return 0;
}

View File

@@ -58,7 +58,7 @@ typedef struct {
// You must implement this in your disk driver (e.g., floppy.c) // You must implement this in your disk driver (e.g., floppy.c)
// Returns 0 on success, non-zero on error. // Returns 0 on success, non-zero on error.
int disk_read_sector(uint32_t lba, uint8_t *buffer); extern int disk_read_sector(uint32_t lba, uint8_t *buffer);
void fat12_init(); void fat12_init();
file_t fat12_open(const char *filename); file_t fat12_open(const char *filename);

View File

@@ -1,7 +1,7 @@
#ifndef IRQ_H #ifndef IRQ_H
#define IRQ_H #define IRQ_H
#include <stdint.h> #include "types.h"
void irq_remap(void); void irq_remap(void);
void irq_install(void); void irq_install(void);

View File

@@ -1,4 +1,3 @@
#include <stdbool.h>
#include "terminal.h" #include "terminal.h"
#include "serial.h" #include "serial.h"
#include "isr.h" #include "isr.h"

View File

@@ -1,30 +1,18 @@
ENTRY(kmain) ENTRY(kmain)
PHDRS {
text PT_LOAD FLAGS(5); /* Read + Execute */
rodata PT_LOAD FLAGS(4); /* Read only */
data PT_LOAD FLAGS(6); /* Read + Write */
}
SECTIONS { SECTIONS {
. = 1M; . = 1M;
.text : { .text : {
*(.text*) *(.text*)
} :text }
.rodata : {
*(.rodata*)
} :rodata
.data : {
*(.data*)
} :data
.rodata : { *(.rodata*) }
.data : { *(.data*) }
.bss : { .bss : {
*(.bss*) *(.bss*)
*(COMMON) *(COMMON)
} :data }
.stack (NOLOAD) : { .stack (NOLOAD) : {
. = ALIGN(4); . = ALIGN(4);

View File

@@ -15,3 +15,124 @@ static inline void byte_copy_backward(uint8_t *dst, const uint8_t *src, size_t n
while (n--) *--dst = *--src; while (n--) *--dst = *--src;
} }
/* --------------------------------------------------------------------- *
* memcpy no overlap allowed (behaviour undefined if overlap)
* --------------------------------------------------------------------- */
void *memcpy(void *restrict dst, const void *restrict src, size_t n)
{
uint8_t *d = (uint8_t *)dst;
const uint8_t *s = (const uint8_t *)src;
#if defined(MEMORY_OPTIMIZED)
/* Align destination to 4-byte boundary */
size_t align = (uintptr_t)d & 3U;
if (align) {
size_t head = 4 - align;
if (head > n) head = n;
byte_copy_forward(d, s, head);
d += head; s += head; n -= head;
}
/* 32-bit word copy safe because we already aligned dst */
{
uint32_t *d32 = (uint32_t *)d;
const uint32_t *s32 = (const uint32_t *)s;
size_t words = n / 4;
while (words--) *d32++ = *s32++;
d = (uint8_t *)d32;
s = (const uint8_t *)s32;
n &= 3;
}
#endif
byte_copy_forward(d, s, n);
return dst;
}
/* --------------------------------------------------------------------- *
* memmove handles overlapping regions correctly
* --------------------------------------------------------------------- */
void *memmove(void *dst, const void *src, size_t n)
{
uint8_t *d = (uint8_t *)dst;
const uint8_t *s = (const uint8_t *)src;
if (n == 0 || dst == src)
return dst;
if (d < s) { /* copy forward */
#if defined(MEMORY_OPTIMIZED)
/* Same fast path as memcpy when no overlap */
size_t align = (uintptr_t)d & 3U;
if (align) {
size_t head = 4 - align;
if (head > n) head = n;
byte_copy_forward(d, s, head);
d += head; s += head; n -= head;
}
{
uint32_t *d32 = (uint32_t *)d;
const uint32_t *s32 = (const uint32_t *)s;
size_t words = n / 4;
while (words--) *d32++ = *s32++;
d = (uint8_t *)d32;
s = (const uint8_t *)s32;
n &= 3;
}
#endif
byte_copy_forward(d, s, n);
} else { /* copy backward */
byte_copy_backward(d, s, n);
}
return dst;
}
/* --------------------------------------------------------------------- *
* memcmp lexicographical compare
* --------------------------------------------------------------------- */
int memcmp(const void *s1, const void *s2, size_t n)
{
const uint8_t *a = (const uint8_t *)s1;
const uint8_t *b = (const uint8_t *)s2;
#if defined(MEMORY_OPTIMIZED)
/* Align to 4-byte boundary */
size_t align = (uintptr_t)a & 3U;
if (align && align == ((uintptr_t)b & 3U)) {
size_t head = 4 - align;
if (head > n) head = n;
while (head--) {
int diff = *a++ - *b++;
if (diff) return diff;
}
n -= head;
}
{
const uint32_t *a32 = (const uint32_t *)a;
const uint32_t *b32 = (const uint32_t *)b;
size_t words = n / 4;
while (words--) {
uint32_t va = *a32++, vb = *b32++;
if (va != vb) {
/* byte-wise fallback for the differing word */
const uint8_t *pa = (const uint8_t *)(a32 - 1);
const uint8_t *pb = (const uint8_t *)(b32 - 1);
for (int i = 0; i < 4; ++i) {
int diff = pa[i] - pb[i];
if (diff) return diff;
}
}
}
a = (const uint8_t *)a32;
b = (const uint8_t *)b32;
n &= 3;
}
#endif
while (n--) {
int diff = *a++ - *b++;
if (diff) return diff;
}
return 0;
}

View File

@@ -1,17 +1,21 @@
#include <stdint.h>
#include <string.h>
#include "io.h"
#include "paging.h" #include "paging.h"
#include "io.h"
#include <stdint.h>
#include <stddef.h>
page_directory_entry_t *page_directory = (page_directory_entry_t *)0x200000; page_directory_entry_t *page_directory = (page_directory_entry_t *)0x200000;
page_table_entry_t *page_table = (page_table_entry_t *)0x201000; page_table_entry_t *page_table = (page_table_entry_t *)0x201000;
page_table_entry_t *heap_page_table = (page_table_entry_t *)0x202000;
// Helper function to set up the page directory entry // Helper function to set up the page directory entry
void set_page_directory(page_directory_entry_t *dir) { void set_page_directory(page_directory_entry_t *dir) {
// Set first PDE for (int i = 0; i < PAGE_DIRECTORY_SIZE; i++) {
dir[i].present = 0;
}
dir[0].present = 1; dir[0].present = 1;
dir[0].rw = 1; dir[0].rw = 1;
dir[0].addr = (uint32_t)page_table >> 12; dir[0].user = 0;
dir[0].frame = (uint32_t)page_table >> 12;
} }
// Helper function to set up the page table entry // Helper function to set up the page table entry
@@ -20,7 +24,11 @@ void set_page_table(page_table_entry_t *table) {
// Set up page table entries with identity mapping // Set up page table entries with identity mapping
table[i].present = 1; table[i].present = 1;
table[i].rw = 1; // Read/Write table[i].rw = 1; // Read/Write
table[i].addr = i; // Identity mapping table[i].user = 0; // Kernel mode
table[i].write_through = 0;
table[i].cache_disabled = 0;
table[i].accessed = 0;
table[i].frame = i; // Identity mapping
} }
} }
@@ -39,13 +47,26 @@ void enable_paging() {
// Initialize paging: set up the page directory and enable paging // Initialize paging: set up the page directory and enable paging
void paging_init() { void paging_init() {
// Zero out the tables
memset(page_directory, 0x00, PAGE_DIRECTORY_SIZE * sizeof *page_directory);
memset(page_table, 0x00, PAGE_TABLE_SIZE * sizeof *page_table);
// Set up identity-mapped page directory + table // Set up identity-mapped page directory + table
set_page_directory(page_directory); set_page_directory(page_directory);
set_page_table(page_table); set_page_table(page_table);
// === Set up heap mapping at 0xC0100000 ===
for (int i = 0; i < PAGE_TABLE_SIZE; i++) {
heap_page_table[i].present = 1;
heap_page_table[i].rw = 1;
heap_page_table[i].user = 0;
heap_page_table[i].write_through = 0;
heap_page_table[i].cache_disabled = 0;
heap_page_table[i].accessed = 0;
heap_page_table[i].frame = (256 + i); // Start physical heap at 1MB (256*4KB = 1MB)
}
// Index 772 = 0xC0100000 / 4MB
page_directory[772].present = 1;
page_directory[772].rw = 1;
page_directory[772].user = 0;
page_directory[772].frame = (uint32_t)heap_page_table >> 12;
enable_paging(); enable_paging();
} }

View File

@@ -16,25 +16,25 @@ typedef struct {
uint32_t write_through : 1; // Write-through cache uint32_t write_through : 1; // Write-through cache
uint32_t cache_disabled : 1; // Cache disabled uint32_t cache_disabled : 1; // Cache disabled
uint32_t accessed : 1; // Accessed bit uint32_t accessed : 1; // Accessed bit
uint32_t dirty : 1; // Dirty bit uint32_t reserved : 1; // Reserved bit
uint32_t attribute : 1; // Page size (0: 4KB, 1: 4MB) uint32_t page_size : 1; // Page size (0: 4KB, 1: 4MB)
uint32_t global : 1; // Global page (can be used across different processes) uint32_t global : 1; // Global page (can be used across different processes)
uint32_t reserved : 3; // Unused uint32_t available : 3; // Available bits for the system
uint32_t addr : 20; // Page frame address (physical address) uint32_t frame : 20; // Frame address (physical address)
} __attribute__((packed)) page_table_entry_t; } __attribute__((packed)) page_table_entry_t;
// Define page directory entry // Define page directory entry
typedef struct { typedef struct {
uint32_t present : 1; // Present bit (1: PTE is present in memory) uint32_t present : 1;
uint32_t rw : 1; // Read-Write bit (1: pages are read-write) uint32_t rw : 1;
uint32_t user : 1; // User-supervisor bit (1: user mode access) uint32_t user : 1;
uint32_t write_through : 1; // Write-through cache uint32_t write_through : 1;
uint32_t cache_disabled : 1; // Cache disabled uint32_t cache_disabled : 1;
uint32_t accessed : 1; // Accessed bit uint32_t accessed : 1;
uint32_t available : 1; // Unused uint32_t reserved : 1;
uint32_t page_size : 1; // Page size (0: 4KB, 1: 4MB) uint32_t zero : 5; // Must be zero for page directory
uint32_t available_2 : 4; // Unused uint32_t reserved_2 : 7; // Reserved bits
uint32_t addr : 20; // Page table address uint32_t frame : 20; // Frame address of the page table
} __attribute__((packed)) page_directory_entry_t; } __attribute__((packed)) page_directory_entry_t;
extern page_directory_entry_t *page_directory; extern page_directory_entry_t *page_directory;

View File

@@ -1,7 +1,7 @@
#ifndef PRINT_H #ifndef PRINT_H
#define PRINT_H #define PRINT_H
#include <stdint.h> #include "types.h"
void print_string(const char *str); void print_string(const char *str);
void my_printf(const char *format, ...); void my_printf(const char *format, ...);

117
kernel/ps2.c Normal file
View File

@@ -0,0 +1,117 @@
#include "ps2.h"
/* --- Low Level I/O Helpers --- */
static inline void outb(uint16_t port, uint8_t val) {
asm volatile ("outb %0, %1" : : "a"(val), "Nd"(port));
}
static inline uint8_t inb(uint16_t port) {
uint8_t ret;
asm volatile ("inb %1, %0" : "=a"(ret) : "Nd"(port));
return ret;
}
/* --- Controller Synchronization --- */
// Wait until the controller is ready to receive a byte
static void ps2_wait_write() {
while (inb(PS2_STATUS_REG) & PS2_STATUS_INPUT);
}
// Wait until the controller has a byte for us to read
static void ps2_wait_read() {
while (!(inb(PS2_STATUS_REG) & PS2_STATUS_OUTPUT));
}
/* --- Initialization --- */
void ps2_write_device(uint8_t command) {
ps2_wait_write();
outb(PS2_DATA_PORT, command);
}
void ps2_write_mouse(uint8_t data) {
ps2_wait_write();
outb(PS2_COMMAND_REG, PS2_CMD_WRITE_MOUSE); // "Next byte goes to mouse"
ps2_wait_write();
outb(PS2_DATA_PORT, data);
}
void ps2_init(void) {
// 1. Disable Devices
ps2_wait_write();
outb(PS2_COMMAND_REG, PS2_CMD_DISABLE_KB);
ps2_wait_write();
outb(PS2_COMMAND_REG, PS2_CMD_DISABLE_MS);
// 2. Flush Output Buffer
while (inb(PS2_STATUS_REG) & PS2_STATUS_OUTPUT) {
inb(PS2_DATA_PORT);
}
// 3. Set Controller Configuration Byte
// Bit 0: KB Interrupt, Bit 1: Mouse Interrupt, Bit 6: Translation
ps2_wait_write();
outb(PS2_COMMAND_REG, PS2_CMD_READ_CONFIG);
ps2_wait_read();
uint8_t status = inb(PS2_DATA_PORT);
status |= (1 << 0) | (1 << 1); // Enable IRQ 1 and IRQ 12
ps2_wait_write();
outb(PS2_COMMAND_REG, PS2_CMD_WRITE_CONFIG);
ps2_wait_write();
outb(PS2_DATA_PORT, status);
// 4. Enable Devices
ps2_wait_write();
outb(PS2_COMMAND_REG, PS2_CMD_ENABLE_KB);
ps2_wait_write();
outb(PS2_COMMAND_REG, PS2_CMD_ENABLE_MS);
// 5. Initialize Mouse (The mouse won't send IRQs until you tell it to)
ps2_write_mouse(MOUSE_CMD_SET_DEFAULTS);
ps2_wait_read(); inb(PS2_DATA_PORT); // Read ACK (0xFA)
ps2_write_mouse(MOUSE_CMD_ENABLE_SCAN);
ps2_wait_read(); inb(PS2_DATA_PORT); // Read ACK (0xFA)
}
/* --- IRQ Handlers --- */
// Called from IRQ 1 (Keyboard)
void ps2_keyboard_handler(void) {
uint8_t scancode = inb(PS2_DATA_PORT);
// Process scancode (e.g., put it into a circular buffer)
}
// Called from IRQ 12 (Mouse)
static uint8_t mouse_cycle = 0;
static uint8_t mouse_bytes[3];
void ps2_mouse_handler(void) {
uint8_t status = inb(PS2_STATUS_REG);
// Ensure this is actually mouse data
if (!(status & PS2_STATUS_MOUSE)) return;
mouse_bytes[mouse_cycle++] = inb(PS2_DATA_PORT);
if (mouse_cycle == 3) {
mouse_cycle = 0;
// Byte 0: Flags (Buttons, Signs)
// Byte 1: X Delta
// Byte 2: Y Delta
mouse_state_t state;
state.left_button = (mouse_bytes[0] & 0x01);
state.right_button = (mouse_bytes[0] & 0x02);
state.middle_button = (mouse_bytes[0] & 0x04);
// Handle negative deltas (signed 9-bit logic)
state.x_delta = (int8_t)mouse_bytes[1];
state.y_delta = (int8_t)mouse_bytes[2];
// Update your kernel's internal mouse position here
}
}

45
kernel/ps2.h Normal file
View File

@@ -0,0 +1,45 @@
#ifndef PS2_H
#define PS2_H
#include <stdint.h>
#include <stdbool.h>
/* I/O Ports */
#define PS2_DATA_PORT 0x60
#define PS2_STATUS_REG 0x64
#define PS2_COMMAND_REG 0x64
/* Status Register Bits */
#define PS2_STATUS_OUTPUT 0x01 // 1 = Data ready to be read
#define PS2_STATUS_INPUT 0x02 // 1 = Controller busy, don't write yet
#define PS2_STATUS_SYS 0x04 // System flag
#define PS2_STATUS_CMD_DATA 0x08 // 0 = Data written to 0x60, 1 = Cmd to 0x64
#define PS2_STATUS_MOUSE 0x20 // 1 = Mouse data, 0 = Keyboard data
/* Controller Commands */
#define PS2_CMD_READ_CONFIG 0x20
#define PS2_CMD_WRITE_CONFIG 0x60
#define PS2_CMD_DISABLE_MS 0xA7
#define PS2_CMD_ENABLE_MS 0xA8
#define PS2_CMD_DISABLE_KB 0xAD
#define PS2_CMD_ENABLE_KB 0xAE
#define PS2_CMD_WRITE_MOUSE 0xD4
/* Mouse Commands */
#define MOUSE_CMD_SET_DEFAULTS 0xF6
#define MOUSE_CMD_ENABLE_SCAN 0xF4
typedef struct {
int8_t x_delta;
int8_t y_delta;
bool left_button;
bool right_button;
bool middle_button;
} mouse_state_t;
/* Public API */
void ps2_init(void);
void ps2_keyboard_handler(void);
void ps2_mouse_handler(void);
#endif

View File

@@ -1,8 +1,9 @@
#include <stdbool.h>
#include <string.h>
#include "malloc.h" #include "malloc.h"
#include "print.h" #include "print.h"
#include "threading.h" #include "threading.h"
#include "types.h"
#include "utils.h"
#include <stdint.h>
#define MAX_THREADS 16 // Maximum number of threads #define MAX_THREADS 16 // Maximum number of threads
#define THREAD_STACK_SIZE 8192 // Stack size for each thread #define THREAD_STACK_SIZE 8192 // Stack size for each thread

1
kernel/types.c Normal file
View File

@@ -0,0 +1 @@
#include "types.h"

62
kernel/types.h Normal file
View File

@@ -0,0 +1,62 @@
#ifndef TYPES_H
#define TYPES_H
// ----------------------------
// Fixed-width integer types
// ----------------------------
typedef unsigned char uint8_t;
typedef signed char int8_t;
typedef unsigned short uint16_t;
typedef signed short int16_t;
typedef unsigned int uint32_t;
typedef signed int int32_t;
typedef unsigned long long uint64_t;
typedef signed long long int64_t;
// ----------------------------
// Boolean & NULL definitions
// ----------------------------
#ifndef __cplusplus
typedef enum { false = 0, true = 1 } bool;
#endif
#ifndef NULL
#define NULL ((void*)0)
#endif
// ----------------------------
// OS subsystem types
// ----------------------------
typedef uint32_t size_t;
typedef int32_t ssize_t;
typedef uint32_t phys_addr_t; // Physical address
typedef uint32_t virt_addr_t; // Virtual address
typedef uint32_t pid_t; // Process ID
typedef uint32_t tid_t; // Thread ID
// ----------------------------
// Bitfield & utility macros
// ----------------------------
#define BIT(n) (1U << (n))
#define BITS(m, n) (((1U << ((n) - (m) + 1)) - 1) << (m))
// Align value to next multiple of alignment
#define ALIGN_UP(val, align) (((val) + ((align)-1)) & ~((align)-1))
#define ALIGN_DOWN(val, align) ((val) & ~((align)-1))
// ----------------------------
// Attributes for structures
// ----------------------------
#define PACKED __attribute__((packed))
#define ALIGN(x) __attribute__((aligned(x)))
// ----------------------------
// Likely/unlikely branch hints
// (for future optimization use)
// ----------------------------
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#endif // TYPES_H

View File

@@ -76,3 +76,10 @@ char* utoa(unsigned int value, char* str, int base) {
reverse(str, i); reverse(str, i);
return str; return str;
} }
void *memset(void *dest, int value, size_t len) {
unsigned char *ptr = (unsigned char *)dest;
while (len-- > 0)
*ptr++ = (unsigned char)value;
return dest;
}

View File

@@ -1,7 +1,7 @@
#ifndef UTILS_H #ifndef UTILS_H
#define UTILS_H #define UTILS_H
#include <stddef.h> #include "types.h"
// Convert integer to string (base is typically 10, 16, etc.) // Convert integer to string (base is typically 10, 16, etc.)
char* itoa(int value, char* str, int base); char* itoa(int value, char* str, int base);
@@ -9,4 +9,6 @@ char* itoa(int value, char* str, int base);
// Convert unsigned integer to string (base is typically 10, 16, etc.) // Convert unsigned integer to string (base is typically 10, 16, etc.)
char* utoa(unsigned int value, char* str, int base); char* utoa(unsigned int value, char* str, int base);
void *memset(void *dest, int value, size_t len);
#endif // UTILS_H #endif // UTILS_H

View File

@@ -1,98 +0,0 @@
#include "vesa.h"
#include "io.h"
#include "print.h"
// VESA mode and controller information
#define VESA_BIOS_INT 0x10
#define VESA_BIOS_FUNC 0x4F
// Function to call BIOS with specific VESA function
static bool vesa_bios_call(uint16_t function, uint16_t* eax, uint32_t* ebx, uint32_t* ecx, uint32_t* edx) {
// Set up registers for VESA function call
__asm__ __volatile__(
"movw %1, %%ax\n" // Move function number into AX
"int $0x10\n" // Call BIOS interrupt 0x10 (VESA)
"movw %%ax, %0\n" // Move return value in AX to the return variable
: "=m"(*eax) // Output operand (eax)
: "m"(function) // Input operand (function number)
: "%eax", "%ebx", "%ecx", "%edx", "memory"
);
// Check for success (return values vary depending on the function)
return *eax == 0x004F;
}
// Set the VESA video mode
bool vesa_set_mode(uint16_t mode) {
uint16_t eax = VBE_FUNCTION_SET_MODE;
uint32_t ebx = mode;
uint32_t ecx = 0;
uint32_t edx = 0;
if (vesa_bios_call(VBE_FUNCTION_SET_MODE, &eax, &ebx, &ecx, &edx)) {
return true;
}
return false;
}
// Get the VESA mode information
bool vesa_get_mode_info(uint16_t mode, vbe_mode_info_t* info) {
uint16_t eax = VBE_FUNCTION_GET_MODE_INFO;
uint32_t ebx = mode;
uint32_t ecx = 0;
uint32_t edx = 0;
if (vesa_bios_call(VBE_FUNCTION_GET_MODE_INFO, &eax, &ebx, &ecx, &edx)) {
// Copy the information into the provided struct
uint32_t base = (uint32_t)info;
__asm__ __volatile__(
"movw %%bx, %%es:%%di\n"
:
: "b" (base)
: "%es", "%di", "memory"
);
return true;
}
return false;
}
// Get the VESA controller information
bool vesa_get_controller_info(vbe_controller_info_t* info) {
uint16_t eax = VBE_FUNCTION_GET_CONTROLLER_INFO;
uint32_t ebx = 0;
uint32_t ecx = 0;
uint32_t edx = 0;
if (vesa_bios_call(VBE_FUNCTION_GET_CONTROLLER_INFO, &eax, &ebx, &ecx, &edx)) {
// Copy controller information into the provided struct
uint32_t base = (uint32_t)info;
__asm__ __volatile__(
"movw %%bx, %%es:%%di\n"
:
: "b" (base)
: "%es", "%di", "memory"
);
return true;
}
return false;
}
// Return pointer to the VESA framebuffer
void* vesa_get_framebuffer(void) {
vbe_mode_info_t mode_info;
if (vesa_get_mode_info(0x101, &mode_info)) {
return (void*)mode_info.PhysBasePtr;
}
return NULL;
}
// Clear the screen with a color
void vesa_clear_screen(uint32_t color) {
uint32_t* framebuffer = (uint32_t*)vesa_get_framebuffer();
if (framebuffer) {
for (int y = 0; y < 480; y++) { // For 640x480 mode
for (int x = 0; x < 640; x++) {
framebuffer[y * 640 + x] = color;
}
}
}
}

View File

@@ -1,67 +0,0 @@
#ifndef VESA_H
#define VESA_H
#include <stdint.h>
#include <stdbool.h>
// VESA BIOS Extension 2.0 Function Calls
#define VBE_FUNCTION_SET_MODE 0x4F02
#define VBE_FUNCTION_GET_MODE_INFO 0x4F01
#define VBE_FUNCTION_GET_CONTROLLER_INFO 0x4F00
#define VBE_FUNCTION_SET_DISPLAY_START 0x4F05
// VESA Mode Information Structure (VBE 2.0)
typedef struct {
uint16_t ModeAttributes; // Mode attributes
uint8_t WinAAttributes; // Window A attributes
uint8_t WinBAttributes; // Window B attributes
uint16_t WinGranularity; // Window granularity
uint16_t WinSize; // Window size
uint16_t WinASegment; // Window A segment address
uint16_t WinBSegment; // Window B segment address
uint32_t WinFuncPtr; // Function pointer for window
uint16_t BytesPerScanLine; // Bytes per scanline
uint16_t XResolution; // Horizontal resolution in pixels
uint16_t YResolution; // Vertical resolution in pixels
uint8_t XCharSize; // Character cell width
uint8_t YCharSize; // Character cell height
uint8_t NumberOfPlanes; // Number of memory planes
uint8_t BitsPerPixel; // Bits per pixel
uint8_t NumberOfBanks; // Number of banks
uint8_t MemoryModel; // Memory model type
uint8_t BankSize; // Bank size in kB
uint8_t NumberOfImagePages; // Number of image pages
uint8_t Reserved0; // Reserved
uint8_t RedMaskSize; // Red mask size
uint8_t RedFieldPosition; // Red field position
uint8_t GreenMaskSize; // Green mask size
uint8_t GreenFieldPosition; // Green field position
uint8_t BlueMaskSize; // Blue mask size
uint8_t BlueFieldPosition; // Blue field position
uint8_t RsvdMaskSize; // Reserved mask size
uint8_t RsvdFieldPosition; // Reserved field position
uint8_t DirectColorModeInfo; // Direct color mode info
uint32_t PhysBasePtr; // Physical base address of the linear framebuffer
uint32_t OffScreenMemOff; // Offset to off-screen memory
uint16_t OffScreenMemSize; // Size of off-screen memory
uint8_t Reserved1[206]; // Reserved
} __attribute__((packed)) vbe_mode_info_t;
// VESA Controller Information
typedef struct {
uint8_t VESAVersion[2]; // VESA version
uint32_t OEMStringPtr; // Pointer to OEM string
uint8_t Capabilities[4]; // Capabilities of the controller
uint32_t VideoModePtr; // Pointer to supported video modes
uint16_t TotalMemory; // Total video memory (in 64KB)
uint8_t Reserved[4]; // Reserved
} __attribute__((packed)) vbe_controller_info_t;
// Function Prototypes
bool vesa_set_mode(uint16_t mode);
bool vesa_get_mode_info(uint16_t mode, vbe_mode_info_t* info);
bool vesa_get_controller_info(vbe_controller_info_t* info);
void* vesa_get_framebuffer(void);
void vesa_clear_screen(uint32_t color);
#endif // VESA_H

View File

@@ -1,14 +0,0 @@
#ifndef CLASSICOS_KLIBC_STDARG_H
#define CLASSICOS_KLIBC_STDARG_H
typedef __builtin_va_list va_list;
#ifndef va_start
#define va_start(ap, param) __builtin_va_start(ap, param)
#endif
#define va_end(ap) __builtin_va_end(ap)
#define va_arg(ap, type) __builtin_va_arg(ap, type)
#define va_copy(dest, src) __builtin_va_copy(dest, src)
#endif // CLASSICOS_KLIBC_STDARG_H

View File

@@ -1,12 +0,0 @@
#ifndef CLASSICOS_KLIBC_STDBOOL_H
#define CLASSICOS_KLIBC_STDBOOL_H
#ifndef __cplusplus
#define bool _Bool
#define true 1
#define false 0
#endif
#define __bool_true_false_are_defined 1
#endif // CLASSICOS_KLIBC_STDBOOL_H

View File

@@ -1,10 +0,0 @@
#ifndef CLASSICOS_KLIBC_STDDEF_H
#define CLASSICOS_KLIBC_STDDEF_H
typedef __SIZE_TYPE__ size_t;
typedef __PTRDIFF_TYPE__ ptrdiff_t;
#undef NULL
#define NULL ((void*)0)
#endif // CLASSICOS_KLIBC_STDDEF_H

View File

@@ -1,16 +0,0 @@
#ifndef CLASSICOS_KLIBC_STDINT_H
#define CLASSICOS_KLIBC_STDINT_H
typedef signed char int8_t;
typedef short int int16_t;
typedef int int32_t;
typedef long long int int64_t;
typedef unsigned char uint8_t;
typedef unsigned short int uint16_t;
typedef unsigned int uint32_t;
typedef unsigned long long int uint64_t;
typedef unsigned int uintptr_t;
#endif // CLASSICOS_KLIBC_STDINT_H

View File

@@ -1,4 +0,0 @@
#ifndef CLASSICOS_KLIBC_STDIO_H
#define CLASSICOS_KLIBC_STDIO_H
#endif // CLASSICOS_KLIBC_STDIO_H

View File

@@ -1,4 +0,0 @@
#ifndef CLASSICOS_KLIBC_STDLIB_H
#define CLASSICOS_KLIBC_STDLIB_H
#endif // CLASSICOS_KLIBC_STDLIB_H

View File

@@ -1,14 +0,0 @@
#ifndef CLASSICOS_KLIBC_STRING_H
#define CLASSICOS_KLIBC_STRING_H
#include <stddef.h>
extern int memcmp(const void* s1, const void* s2, size_t n);
extern void* memmove(void* dst, const void* src, size_t n);
extern void* memcpy(void* dst, const void* src, size_t n);
extern void* memset(void* dst, int c, size_t n);
extern size_t strlen(const char* s);
extern int strcmp(const char* s1, const char* s2);
#endif // CLASSICOS_KLIBC_STRING_H

View File

@@ -1,107 +0,0 @@
#include <string.h>
int memcmp(const void* s1, const void* s2, size_t n) {
const unsigned char* c1 = s1;
const unsigned char* c2 = s2;
int d = 0;
while (n--) {
d = (int)*c1++ - (int)*c2++;
if (d) break;
}
return d;
}
void* memmove(void* dst, const void* src, size_t n) {
const char* p = src;
char* q = dst;
#if defined(__i386__) || defined(__x86_64__)
if (q < p) {
__asm__ volatile("cld; rep; movsb" : "+c"(n), "+S"(p), "+D"(q));
} else {
p += (n - 1);
q += (n - 1);
__asm__ volatile("std; rep; movsb; cld" : "+c"(n), "+S"(p), "+D"(q));
}
#else
if (q < p) {
while (n--) {
*q++ = *p++;
}
} else {
p += n;
q += n;
while (n--) {
*--q = *--p;
}
}
#endif
return dst;
}
void* memcpy(void* dst, const void* src, size_t n) {
const char* p = src;
char* q = dst;
#if defined(__i386__)
size_t nl = n >> 2;
__asm__ volatile("cld ; rep ; movsl ; movl %3,%0 ; rep ; movsb"
: "+c"(nl), "+S"(p), "+D"(q)
: "r"(n & 3));
#elif defined(__x86_64__)
size_t nq = n >> 3;
__asm__ volatile("cld ; rep ; movsq ; movl %3,%%ecx ; rep ; movsb"
: "+c"(nq), "+S"(p), "+D"(q)
: "r"((uint32_t)(n & 7)));
#else
while (n--) {
*q++ = *p++;
}
#endif
return dst;
}
void* memset(void* dst, int c, size_t n) {
char* q = dst;
#if defined(__i386__)
size_t nl = n >> 2;
__asm__ volatile("cld ; rep ; stosl ; movl %3,%0 ; rep ; stosb"
: "+c"(nl), "+D"(q)
: "a"((unsigned char)c * 0x01010101U), "r"(n & 3));
#elif defined(__x86_64__)
size_t nq = n >> 3;
__asm__ volatile("cld ; rep ; stosq ; movl %3,%%ecx ; rep ; stosb"
: "+c"(nq), "+D"(q)
: "a"((unsigned char)c * 0x0101010101010101U),
"r"((uint32_t)n & 7));
#else
while (n--) {
*q++ = c;
}
#endif
return dst;
}
size_t strlen(const char* s) {
const char* ss = s;
while (*ss) ss++;
return ss - s;
}
int strcmp(const char* s1, const char* s2) {
const unsigned char* c1 = (const unsigned char*)s1;
const unsigned char* c2 = (const unsigned char*)s2;
unsigned char ch;
int d = 0;
while (1) {
d = (int)(ch = *c1++) - (int)*c2++;
if (d || !ch) break;
}
return d;
}