2 Commits

Author SHA1 Message Date
bbb91f4afa Create fat16.c
Add implementation for fat16 filesystem
2026-01-18 18:11:25 -08:00
06c49171cf Create fat16.h
Add fat16 filesystem support.
2026-01-18 18:07:55 -08:00
6 changed files with 189 additions and 75 deletions

View File

@@ -1,80 +1,36 @@
#include <string.h>
#include "display.h" #include "display.h"
#include "io.h" #include "io.h" // Include your I/O header for port access
#include "vga.h" #include "vga.h"
// Initialize the display // Initialize the display
void init_display(void) { void init_display(void) {
// Initialize the VGA driver. This typically sets up the 80x25 text mode, // Initialize VGA settings, if necessary
// clears the screen, and sets the cursor. // This could involve setting up the VGA mode, etc.
vga_init(); set_display_mode(0x13); // Example: Set to 320x200 256-color mode
} }
// Enumerate connected displays // Enumerate connected displays
void enumerate_displays(void) { void enumerate_displays(void) {
// This function is often a complex operation in a real driver. // This is a simplified example. Actual enumeration may require
// In this simplified kernel/VGA text mode environment, we use printf // reading from specific VGA registers or using BIOS interrupts.
// to output a message and rely on the fact that VGA is present.
// Clear the display before printing a message // For demonstration, we will just print a message
vga_clear(vga_entry_color(VGA_COLOR_LIGHT_GREY, VGA_COLOR_BLACK)); // In a real driver, you would check the VGA registers
// to determine connected displays.
// Output a simplified enumeration message clear_display();
vga_printf("Display: Standard VGA Text Mode (80x25) Detected.\n"); // Here you would typically read from VGA registers to find connected displays
// For example, using inb() to read from VGA ports
// In a real driver, you would use inb() and outb() with specific VGA ports
// to read information (e.g., from the CRTC registers 0x3D4/0x3D5)
// to check for display presence or configuration.
} }
// Set the display mode // Set the display mode
// NOTE: Setting arbitrary VGA modes (like 0x13 for 320x200) is very complex
// and requires writing hundreds of register values, often done via BIOS in
// real mode. Since we are in protected mode and have a simple text driver,
// this function is kept simple or treated as a placeholder for full mode changes.
void set_display_mode(uint8_t mode) { void set_display_mode(uint8_t mode) {
// Check if the requested mode is a known mode (e.g., VGA Text Mode 3) // Set the VGA mode by writing to the appropriate registers
// For this example, we simply acknowledge the call. outb(VGA_PORT, mode); // Example function to write to a port
// A true mode set would involve complex register sequencing.
// The provided vga.c is a Text Mode driver, so a graphical mode set
// like 0x13 (320x200 256-color) would break the existing vga_printf functionality.
// A simplified text-mode-specific response:
if (mode == 0x03) { // Mode 3 is standard 80x25 text mode
vga_printf("Display mode set to 80x25 Text Mode (Mode 0x03).\n");
vga_init(); // Re-initialize the text mode
} else {
// Simple I/O example based on the original structure (Caution: Incomplete for full mode set)
outb(VGA_PORT, mode); // Example function to write to a port
vga_printf("Attempting to set display mode to 0x%x. (Warning: May break current display)\n", mode);
}
} }
// Clear the display // Clear the display
void clear_display(void) { void clear_display(void) {
// Use the VGA driver's clear function, typically clearing to black on light grey // Clear the display by filling it with a color
// or black on black. We'll use the black on light grey from vga_init for consistency. // This is a placeholder for actual clearing logic
vga_clear(vga_entry_color(VGA_COLOR_BLACK, VGA_COLOR_LIGHT_GREY)); // You would typically write to video memory here
// Reset cursor to 0, 0
vga_set_cursor_position(0, 0);
}
// Helper function to write a string
void display_write_string(const char* str) {
// Use the VGA driver's string writing function
vga_write_string(str, strlen(str));
}
// Helper function to print a formatted string
void display_printf(const char* format, ...) {
// Use the VGA driver's printf function
va_list args;
va_start(args, format);
// The vga_printf function already handles the va_list internally,
// so we can just call it directly.
vga_printf(format, args);
va_end(args);
} }

View File

@@ -2,21 +2,13 @@
#define DISPLAY_H #define DISPLAY_H
#include <stdint.h> #include <stdint.h>
#include "vga.h" // Include VGA functions
#define VGA_PORT 0x3C0 // Base port for VGA (Often used for general control, though 0x3D4/0x3D5 are used for cursor) #define VGA_PORT 0x3C0 // Base port for VGA
// Function prototypes // Function prototypes
void init_display(void); void init_display(void);
void enumerate_displays(void); void enumerate_displays(void);
void set_display_mode(uint8_t mode); // In this context, modes are typically BIOS or VESA modes, which are complex. void set_display_mode(uint8_t mode);
// We'll treat this as a placeholder/simple mode call.
void clear_display(void); void clear_display(void);
// New function to write a string using the VGA driver
void display_write_string(const char* str);
// New function to print a formatted string using the VGA driver
void display_printf(const char* format, ...);
#endif // DISPLAY_H #endif // DISPLAY_H

107
kernel/fat16.c Normal file
View File

@@ -0,0 +1,107 @@
#include "fat16.h"
#include "ata.h" // Use ata_read_sector and ata_write_sector
#include "print.h" // For debugging
#include <string.h> // For string manipulation
// Global variables
static fat16_boot_sector_t boot_sector;
static uint32_t root_dir_sector = FAT16_ROOT_DIR_SECTOR;
// Read a sector from the disk using ATA
bool read_sector(uint32_t lba, uint8_t* buffer) {
return ata_read_sector(lba, buffer);
}
// Write a sector to the disk using ATA
bool write_sector(uint32_t lba, const uint8_t* buffer) {
return ata_write_sector(lba, buffer);
}
// Parse the boot sector to retrieve basic file system info
bool parse_fat16_boot_sector(void) {
uint8_t sector_buffer[FAT16_SECTOR_SIZE];
// Read the boot sector
if (!read_sector(FAT16_BOOT_SECTOR, sector_buffer)) {
print_string("[FAT16] Failed to read boot sector\n");
return false;
}
// Cast to boot sector structure
memcpy(&boot_sector, sector_buffer, sizeof(fat16_boot_sector_t));
// Check for FAT16 signature
if (boot_sector.oem_name[0] != 'F' || boot_sector.oem_name[1] != 'A' || boot_sector.oem_name[2] != 'T') {
print_string("[FAT16] Invalid FAT16 boot sector signature\n");
return false;
}
print_string("[FAT16] FAT16 boot sector parsed successfully\n");
return true;
}
// Parse the root directory
bool parse_fat16_root_dir(void) {
uint8_t sector_buffer[FAT16_SECTOR_SIZE];
for (int i = 0; i < (boot_sector.max_root_entries / (FAT16_SECTOR_SIZE / sizeof(fat16_dir_entry_t))); i++) {
// Read root directory sector
if (!read_sector(root_dir_sector + i, sector_buffer)) {
print_string("[FAT16] Failed to read root directory sector\n");
return false;
}
// Parse the root directory entries
for (int j = 0; j < (FAT16_SECTOR_SIZE / sizeof(fat16_dir_entry_t)); j++) {
fat16_dir_entry_t* entry = (fat16_dir_entry_t*)&sector_buffer[j * sizeof(fat16_dir_entry_t)];
if (entry->name[0] == 0x00) {
// End of directory entries
return true;
}
if (entry->name[0] != 0xE5) {
// Print file name (8.3 format)
char filename[12];
strncpy(filename, (char*)entry->name, 8);
filename[8] = '.';
strncpy(&filename[9], (char*)entry->ext, 3);
filename[11] = '\0';
print_string(filename);
print_string("\n");
}
}
}
return true;
}
// Read a specific directory entry from the FAT16 root directory
bool read_fat16_entry(uint16_t entry_index, fat16_dir_entry_t* entry) {
uint8_t sector_buffer[FAT16_SECTOR_SIZE];
uint32_t sector_num = FAT16_ROOT_DIR_SECTOR + (entry_index / (FAT16_SECTOR_SIZE / sizeof(fat16_dir_entry_t)));
uint16_t entry_offset = entry_index % (FAT16_SECTOR_SIZE / sizeof(fat16_dir_entry_t));
// Read the sector
if (!read_sector(sector_num, sector_buffer)) {
print_string("[FAT16] Failed to read root directory sector\n");
return false;
}
// Get the entry
memcpy(entry, &sector_buffer[entry_offset * sizeof(fat16_dir_entry_t)], sizeof(fat16_dir_entry_t));
return true;
}
// Mount the FAT16 filesystem
bool mount_fat16(void) {
// Parse the boot sector
if (!parse_fat16_boot_sector()) {
return false;
}
// Parse the root directory
if (!parse_fat16_root_dir()) {
return false;
}
print_string("[FAT16] Filesystem mounted successfully\n");
return true;
}

60
kernel/fat16.h Normal file
View File

@@ -0,0 +1,60 @@
#ifndef FAT16_H
#define FAT16_H
#include <stdint.h>
#include <stdbool.h>
/* FAT16 Constants */
#define FAT16_SECTOR_SIZE 512
#define FAT16_CLUSTER_SIZE 1
#define FAT16_MAX_FILENAME_LEN 11 // 8.3 format
#define FAT16_ROOT_DIR_ENTRIES 224 // Fat16 root directory entries (typically 512 bytes per entry)
#define FAT16_BOOT_SECTOR 0
#define FAT16_FAT1_SECTOR 1
#define FAT16_FAT2_SECTOR 2
#define FAT16_ROOT_DIR_SECTOR 19 // First sector of root directory
/* Boot Sector */
typedef struct {
uint8_t jmp[3]; // Jump instruction to code
uint8_t oem_name[8]; // OEM Name
uint16_t bytes_per_sector; // Bytes per sector (512)
uint8_t sectors_per_cluster; // Sectors per cluster
uint16_t reserved_sectors; // Reserved sectors
uint8_t num_fats; // Number of FAT tables
uint16_t max_root_entries; // Max number of root directory entries
uint16_t total_sectors_16; // Total sectors in FAT16
uint8_t media_type; // Media type (0xF8 = fixed drive)
uint16_t sectors_per_fat; // Sectors per FAT table
uint16_t sectors_per_track; // Sectors per track (for CHS addressing)
uint16_t num_heads; // Number of heads (for CHS addressing)
uint32_t hidden_sectors; // Hidden sectors (before the partition)
uint32_t total_sectors_32; // Total sectors in FAT16 (extended)
} __attribute__((packed)) fat16_boot_sector_t;
/* FAT16 Directory Entry */
typedef struct {
uint8_t name[8]; // File name (8 chars)
uint8_t ext[3]; // File extension (3 chars)
uint8_t attributes; // File attributes (e.g., directory, read-only)
uint8_t reserved; // Reserved
uint8_t creation_time[2]; // Creation time
uint8_t creation_date[2]; // Creation date
uint8_t last_access_date[2]; // Last access date
uint8_t first_cluster_high[2]; // High part of first cluster number
uint8_t last_mod_time[2]; // Last modification time
uint8_t last_mod_date[2]; // Last modification date
uint8_t first_cluster_low[2]; // Low part of first cluster number
uint32_t file_size; // File size in bytes
} __attribute__((packed)) fat16_dir_entry_t;
/* Function Prototypes */
bool mount_fat16(void);
bool read_sector(uint32_t lba, uint8_t* buffer);
bool write_sector(uint32_t lba, const uint8_t* buffer);
bool parse_fat16_boot_sector(void);
bool parse_fat16_root_dir(void);
bool read_fat16_entry(uint16_t entry_index, fat16_dir_entry_t* entry);
#endif // FAT16_H

View File

@@ -1,9 +1,9 @@
#include "vga.h"
#include <stddef.h> #include <stddef.h>
#include <stdbool.h> #include <stdbool.h>
#include <string.h> #include <string.h>
#include <stdarg.h> #include <stdarg.h>
#include "string_utils.h" #include "string_utils.h"
#include "vga.h"
void outb(uint16_t port, uint8_t value) { void outb(uint16_t port, uint8_t value) {
__asm__ volatile("outb %0, %1" : : "a"(value), "Nd"(port)); __asm__ volatile("outb %0, %1" : : "a"(value), "Nd"(port));
@@ -134,7 +134,7 @@ void vga_printf(const char* format, ...) {
va_end(args); va_end(args);
// Now you can use the buffer with vga_write_string // Now you can use the buffer with vga_write_string
vga_write_string(buffer, strlen(buffer)); // Use my_strlen instead of strlen vga_write_string(buffer, my_strlen(buffer)); // Use my_strlen instead of strlen
} }
void vga_init(void) { void vga_init(void) {

View File

@@ -35,7 +35,6 @@ typedef enum {
// Function prototypes // Function prototypes
uint8_t vga_entry_color(vga_color fg, vga_color bg); uint8_t vga_entry_color(vga_color fg, vga_color bg);
uint16_t vga_entry(unsigned char uc, uint8_t color); uint16_t vga_entry(unsigned char uc, uint8_t color);
void vga_init(void);
void vga_put_entry_at(char c, uint8_t color, size_t x, size_t y); void vga_put_entry_at(char c, uint8_t color, size_t x, size_t y);
void vga_clear(uint8_t color); void vga_clear(uint8_t color);