2 Commits

Author SHA1 Message Date
bbb91f4afa Create fat16.c
Add implementation for fat16 filesystem
2026-01-18 18:11:25 -08:00
06c49171cf Create fat16.h
Add fat16 filesystem support.
2026-01-18 18:07:55 -08:00
2 changed files with 167 additions and 0 deletions

107
kernel/fat16.c Normal file
View File

@@ -0,0 +1,107 @@
#include "fat16.h"
#include "ata.h" // Use ata_read_sector and ata_write_sector
#include "print.h" // For debugging
#include <string.h> // For string manipulation
// Global variables
static fat16_boot_sector_t boot_sector;
static uint32_t root_dir_sector = FAT16_ROOT_DIR_SECTOR;
// Read a sector from the disk using ATA
bool read_sector(uint32_t lba, uint8_t* buffer) {
return ata_read_sector(lba, buffer);
}
// Write a sector to the disk using ATA
bool write_sector(uint32_t lba, const uint8_t* buffer) {
return ata_write_sector(lba, buffer);
}
// Parse the boot sector to retrieve basic file system info
bool parse_fat16_boot_sector(void) {
uint8_t sector_buffer[FAT16_SECTOR_SIZE];
// Read the boot sector
if (!read_sector(FAT16_BOOT_SECTOR, sector_buffer)) {
print_string("[FAT16] Failed to read boot sector\n");
return false;
}
// Cast to boot sector structure
memcpy(&boot_sector, sector_buffer, sizeof(fat16_boot_sector_t));
// Check for FAT16 signature
if (boot_sector.oem_name[0] != 'F' || boot_sector.oem_name[1] != 'A' || boot_sector.oem_name[2] != 'T') {
print_string("[FAT16] Invalid FAT16 boot sector signature\n");
return false;
}
print_string("[FAT16] FAT16 boot sector parsed successfully\n");
return true;
}
// Parse the root directory
bool parse_fat16_root_dir(void) {
uint8_t sector_buffer[FAT16_SECTOR_SIZE];
for (int i = 0; i < (boot_sector.max_root_entries / (FAT16_SECTOR_SIZE / sizeof(fat16_dir_entry_t))); i++) {
// Read root directory sector
if (!read_sector(root_dir_sector + i, sector_buffer)) {
print_string("[FAT16] Failed to read root directory sector\n");
return false;
}
// Parse the root directory entries
for (int j = 0; j < (FAT16_SECTOR_SIZE / sizeof(fat16_dir_entry_t)); j++) {
fat16_dir_entry_t* entry = (fat16_dir_entry_t*)&sector_buffer[j * sizeof(fat16_dir_entry_t)];
if (entry->name[0] == 0x00) {
// End of directory entries
return true;
}
if (entry->name[0] != 0xE5) {
// Print file name (8.3 format)
char filename[12];
strncpy(filename, (char*)entry->name, 8);
filename[8] = '.';
strncpy(&filename[9], (char*)entry->ext, 3);
filename[11] = '\0';
print_string(filename);
print_string("\n");
}
}
}
return true;
}
// Read a specific directory entry from the FAT16 root directory
bool read_fat16_entry(uint16_t entry_index, fat16_dir_entry_t* entry) {
uint8_t sector_buffer[FAT16_SECTOR_SIZE];
uint32_t sector_num = FAT16_ROOT_DIR_SECTOR + (entry_index / (FAT16_SECTOR_SIZE / sizeof(fat16_dir_entry_t)));
uint16_t entry_offset = entry_index % (FAT16_SECTOR_SIZE / sizeof(fat16_dir_entry_t));
// Read the sector
if (!read_sector(sector_num, sector_buffer)) {
print_string("[FAT16] Failed to read root directory sector\n");
return false;
}
// Get the entry
memcpy(entry, &sector_buffer[entry_offset * sizeof(fat16_dir_entry_t)], sizeof(fat16_dir_entry_t));
return true;
}
// Mount the FAT16 filesystem
bool mount_fat16(void) {
// Parse the boot sector
if (!parse_fat16_boot_sector()) {
return false;
}
// Parse the root directory
if (!parse_fat16_root_dir()) {
return false;
}
print_string("[FAT16] Filesystem mounted successfully\n");
return true;
}

60
kernel/fat16.h Normal file
View File

@@ -0,0 +1,60 @@
#ifndef FAT16_H
#define FAT16_H
#include <stdint.h>
#include <stdbool.h>
/* FAT16 Constants */
#define FAT16_SECTOR_SIZE 512
#define FAT16_CLUSTER_SIZE 1
#define FAT16_MAX_FILENAME_LEN 11 // 8.3 format
#define FAT16_ROOT_DIR_ENTRIES 224 // Fat16 root directory entries (typically 512 bytes per entry)
#define FAT16_BOOT_SECTOR 0
#define FAT16_FAT1_SECTOR 1
#define FAT16_FAT2_SECTOR 2
#define FAT16_ROOT_DIR_SECTOR 19 // First sector of root directory
/* Boot Sector */
typedef struct {
uint8_t jmp[3]; // Jump instruction to code
uint8_t oem_name[8]; // OEM Name
uint16_t bytes_per_sector; // Bytes per sector (512)
uint8_t sectors_per_cluster; // Sectors per cluster
uint16_t reserved_sectors; // Reserved sectors
uint8_t num_fats; // Number of FAT tables
uint16_t max_root_entries; // Max number of root directory entries
uint16_t total_sectors_16; // Total sectors in FAT16
uint8_t media_type; // Media type (0xF8 = fixed drive)
uint16_t sectors_per_fat; // Sectors per FAT table
uint16_t sectors_per_track; // Sectors per track (for CHS addressing)
uint16_t num_heads; // Number of heads (for CHS addressing)
uint32_t hidden_sectors; // Hidden sectors (before the partition)
uint32_t total_sectors_32; // Total sectors in FAT16 (extended)
} __attribute__((packed)) fat16_boot_sector_t;
/* FAT16 Directory Entry */
typedef struct {
uint8_t name[8]; // File name (8 chars)
uint8_t ext[3]; // File extension (3 chars)
uint8_t attributes; // File attributes (e.g., directory, read-only)
uint8_t reserved; // Reserved
uint8_t creation_time[2]; // Creation time
uint8_t creation_date[2]; // Creation date
uint8_t last_access_date[2]; // Last access date
uint8_t first_cluster_high[2]; // High part of first cluster number
uint8_t last_mod_time[2]; // Last modification time
uint8_t last_mod_date[2]; // Last modification date
uint8_t first_cluster_low[2]; // Low part of first cluster number
uint32_t file_size; // File size in bytes
} __attribute__((packed)) fat16_dir_entry_t;
/* Function Prototypes */
bool mount_fat16(void);
bool read_sector(uint32_t lba, uint8_t* buffer);
bool write_sector(uint32_t lba, const uint8_t* buffer);
bool parse_fat16_boot_sector(void);
bool parse_fat16_root_dir(void);
bool read_fat16_entry(uint16_t entry_index, fat16_dir_entry_t* entry);
#endif // FAT16_H