ClassicOS/kernel/threading.c

119 lines
3.8 KiB
C

#include "threading.h"
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#define MAX_THREADS 16 // Maximum number of threads
#define THREAD_STACK_SIZE 8192 // Stack size for each thread
// The thread table stores information about all threads
static Thread thread_table[MAX_THREADS];
static uint32_t current_thread = 0; // Index of the currently running thread
static uint32_t num_threads = 0; // Number of active threads
// A simple mutex spinlock
static volatile int mutex_locked = 0;
// Function declaration for context_switch
void context_switch(Thread *next);
// Initialize the threading system
void thread_init(void) {
memset(thread_table, 0, sizeof(thread_table));
num_threads = 0;
}
// Create a new thread
void thread_create(Thread *thread __attribute__((unused)), void (*start_routine)(void *), void *arg) {
if (num_threads >= MAX_THREADS) {
printf("Error: Maximum thread count reached.\n");
return;
}
// Find an empty slot for the new thread
int index = num_threads++;
thread_table[index] = (Thread){0};
// Set up the new thread
thread_table[index].start_routine = start_routine;
thread_table[index].arg = arg;
thread_table[index].stack_size = THREAD_STACK_SIZE;
thread_table[index].stack = (uint32_t*)malloc(THREAD_STACK_SIZE);
thread_table[index].stack_top = thread_table[index].stack + THREAD_STACK_SIZE / sizeof(uint32_t);
// Initialize the stack (simulate pushing the function's return address)
uint32_t *stack_top = thread_table[index].stack_top;
*(--stack_top) = (uint32_t)start_routine; // Return address (the thread's entry point)
*(--stack_top) = (uint32_t)arg; // Argument to pass to the thread
// Set the thread's state to ready
thread_table[index].state = THREAD_READY;
// If this is the first thread, switch to it
if (index == 0) {
scheduler();
}
}
// Yield the CPU to another thread
void thread_yield(void) {
// Find the next thread in a round-robin manner
uint32_t next_thread = (current_thread + 1) % num_threads;
while (next_thread != current_thread && thread_table[next_thread].state != THREAD_READY) {
next_thread = (next_thread + 1) % num_threads;
}
if (next_thread != current_thread) {
current_thread = next_thread;
scheduler();
}
}
// Exit the current thread
void thread_exit(void) {
thread_table[current_thread].state = THREAD_BLOCKED; // Mark the thread as blocked (finished)
free(thread_table[current_thread].stack); // Free the thread's stack
num_threads--; // Decrease thread count
// Yield to the next thread
thread_yield();
}
// Scheduler: This function selects the next thread to run
void scheduler(void) {
// Find the next ready thread
uint32_t next_thread = (current_thread + 1) % num_threads;
while (thread_table[next_thread].state != THREAD_READY) {
next_thread = (next_thread + 1) % num_threads;
}
if (next_thread != current_thread) {
current_thread = next_thread;
context_switch(&thread_table[current_thread]);
}
}
// Context switch to the next thread (assembly would go here to save/load registers)
void context_switch(Thread *next) {
// For simplicity, context switching in this example would involve saving/restoring registers.
// In a real system, you would need to save the CPU state (registers) and restore the next thread's state.
printf("Switching to thread...\n");
next->start_routine(next->arg); // Start running the next thread
}
// Simple mutex functions (spinlock)
void mutex_init(void) {
mutex_locked = 0;
}
void mutex_lock(void) {
while (__sync_lock_test_and_set(&mutex_locked, 1)) {
// Busy wait (spinlock)
}
}
void mutex_unlock(void) {
__sync_lock_release(&mutex_locked);
}