10 Commits

Author SHA1 Message Date
06472626ee Refactor k_memcmp and implement disk_read_sector
Refactor memory comparison function and add disk read sector function.
2026-01-08 20:53:22 -08:00
be73165069 Update fat12.c
This fixes a offset issue where 510-512 might not be read correctly and might error.
2025-12-19 15:49:59 -08:00
f9980c2e68 Update fat12.h 2025-12-19 15:43:24 -08:00
0a396c58c2 Create floppy.c
floppy driver implementation that works with the fat12 filesystem. This works with the fdc to do floppy things
2025-12-19 15:33:25 -08:00
8abc33c70b Create floppy.h
floppy driver that works with the fat12 implementation
2025-12-19 15:29:08 -08:00
d83e247bbd Merge pull request #76 from shoshta73/configure-script
Configure script
2025-12-19 15:22:02 -08:00
Borna Šoštarić
a1a6fd2aa9 lessen indirection in the makefile 2025-12-19 23:46:03 +01:00
Borna Šoštarić
66f9056406 update readme 2025-12-19 23:44:00 +01:00
Borna Šoštarić
45acbb5c04 generate .build.env as part of configure script 2025-12-19 23:41:32 +01:00
Borna Šoštarić
649a227e41 add configure script for setting up cross compilation tools 2025-12-19 22:47:34 +01:00
10 changed files with 417 additions and 233 deletions

4
.gitignore vendored
View File

@@ -1 +1,3 @@
build
.build.env
build
cross

View File

@@ -1,8 +1,9 @@
AS = nasm
ASFLAGS = -f elf32 -g -F dwarf
CC = gcc
LD = ld
CC = i386-elf-gcc
LD = i386-elf-ld
QEMU= qemu-system-i386
OBJCOPY = i386-elf-objcopy
BUILD_DIR = build
DISK_IMG = $(BUILD_DIR)/disk.img
@@ -19,7 +20,7 @@ all: $(DISK_IMG)
stage1: $(BUILD_DIR)
$(AS) $(ASFLAGS) -o $(BUILD_DIR)/$@.o bootloader/$@.asm
$(LD) -Ttext=0x7c00 -melf_i386 -o $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.o
objcopy -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin
$(OBJCOPY) -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin
# NOTE: Stage2 final size should be checked against `$(STAGE2_SIZE)` by the build system to avoid an overflow.
# Alternatively, convey the final stage2 size through other means to stage1.
@@ -27,7 +28,7 @@ stage2: $(BUILD_DIR)
$(AS) $(ASFLAGS) -o $(BUILD_DIR)/stage2.o bootloader/stage2.asm
$(CC) -std=c11 -ffreestanding -nostdlib -fno-stack-protector -m32 -g -c -o $(BUILD_DIR)/stage2_load.o bootloader/stage2_load.c
$(LD) -Tbootloader/stage2.ld -melf_i386 -o $(BUILD_DIR)/$@.elf $(BUILD_DIR)/stage2.o $(BUILD_DIR)/stage2_load.o
objcopy -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin
$(OBJCOPY) -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin
truncate -s $(STAGE2_SIZE) $(BUILD_DIR)/$@.bin
$(BUILD_DIR)/asm_%.o: kernel/%.asm
@@ -56,3 +57,4 @@ gdb:
clean:
rm -rf $(BUILD_DIR)
rm -rf $(CROSS_DIR)

View File

@@ -5,7 +5,7 @@
[![Platform](https://img.shields.io/badge/platform-x86_IA32-lightgrey?style=flat-square)](https://en.wikipedia.org/wiki/IA-32)
[![Made with](https://img.shields.io/badge/made%20with-C%20%26%20NASM-9cf?style=flat-square)](#)
> **ClassicOS** is a 32-bit Intel x86 operating system built from scratch using C, NASM, and GCC.
> **ClassicOS** is a 32-bit Intel x86 operating system built from scratch using C, NASM, and GCC.
> Designed for 386, 486, and Pentium-class CPUs, it runs in protected mode, outputs to VGA text mode and serial ports, and supports floppy/HDD boot with basic FAT support.
---
@@ -35,6 +35,7 @@ Youll need the following tools installed:
- `qemu-system-i386`
Optional:
- `gdb`
- `vncviewer` (TigerVNC or similar)
@@ -42,13 +43,27 @@ Optional:
## 🛠️ Building ClassicOS
Clone and build:
Clone repository:
```bash
```sh
git clone https://github.com/gbowne1/ClassicOS.git
cd ClassicOS
make
```
build kernel
for %f in (*.c) do gcc -m32 -O0 -Wall -Wextra -Werror -pedantic -ffreestanding -nostdlib -fno-pic -fno-stack-protector -fno-pie -march=i386 -mtune=i386 -c "%f" -o "%f.o"
Run `configure` script to build a cross-compiler toolchain for `i386-elf`:
```sh
./configure
```
Source the `.build.env` file to add the cross-compiler toolchain to your PATH:
```sh
source .build.env
```
Build the kernel:
```sh
make
```

169
configure vendored Executable file
View File

@@ -0,0 +1,169 @@
#!/usr/bin/env bash
set -euo pipefail
# Configuration
TARGET="i386-elf"
BINUTILS_VERSION="2.45"
GCC_VERSION="15.2.0"
# Paths
SCRIPT_PATH="$(realpath "${BASH_SOURCE[0]}")"
SCRIPT_DIR="$(dirname "$SCRIPT_PATH")"
PREFIX="$SCRIPT_DIR/cross"
SRC_DIR="$PREFIX/src"
BINUTILS_SRC="$SRC_DIR/binutils-$BINUTILS_VERSION"
BINUTILS_BUILD="$PREFIX/build-binutils"
GCC_SRC="$SRC_DIR/gcc-$GCC_VERSION"
GCC_BUILD="$PREFIX/build-gcc"
# Flags
DEBUG=0
HELP=0
# Parse arguments
for arg in "$@"; do
case "$arg" in
-h|--help)
HELP=1
;;
-d|--debug)
DEBUG=1
;;
*)
echo "Unknown option: $arg"
echo "Use -h or --help for usage information"
exit 1
;;
esac
done
# Show help
if [[ "$HELP" -eq 1 ]]; then
cat << EOF
Usage: $0 [OPTIONS]
Build a cross-compiler toolchain for $TARGET.
OPTIONS:
-h, --help Show this help message
-d, --debug Enable debug mode (set -x)
This script will:
1. Download binutils $BINUTILS_VERSION and GCC $GCC_VERSION
2. Build and install them to: $PREFIX
EOF
exit 0
fi
# Enable debug mode
if [[ "$DEBUG" -eq 1 ]]; then
set -x
fi
# Print configuration
cat << EOF
=== Build Configuration ===
Target : $TARGET
Prefix : $PREFIX
Binutils : $BINUTILS_VERSION
GCC : $GCC_VERSION
===========================
EOF
# Create directory structure
echo "Setting up directories..."
mkdir -p "$SRC_DIR"
# Download sources
cd "$SRC_DIR"
if [[ ! -d "$BINUTILS_SRC" ]]; then
echo "Downloading binutils $BINUTILS_VERSION..."
wget "https://ftp.gnu.org/gnu/binutils/binutils-$BINUTILS_VERSION.tar.gz"
echo "Extracting binutils..."
tar xf "binutils-$BINUTILS_VERSION.tar.gz"
rm "binutils-$BINUTILS_VERSION.tar.gz"
else
echo "Binutils source already exists, skipping download"
fi
if [[ ! -d "$GCC_SRC" ]]; then
echo "Downloading GCC $GCC_VERSION..."
wget "https://ftp.gnu.org/gnu/gcc/gcc-$GCC_VERSION/gcc-$GCC_VERSION.tar.gz"
echo "Extracting GCC..."
tar xf "gcc-$GCC_VERSION.tar.gz"
rm "gcc-$GCC_VERSION.tar.gz"
else
echo "GCC source already exists, skipping download"
fi
# Download GCC prerequisites
if [[ ! -d "$GCC_SRC/gmp" ]]; then
echo "Downloading GCC prerequisites..."
cd "$GCC_SRC"
./contrib/download_prerequisites
cd "$SRC_DIR"
else
echo "GCC prerequisites already downloaded, skipping"
fi
# Build binutils
if [[ ! -f "$PREFIX/bin/$TARGET-ld" ]]; then
echo "Building binutils..."
mkdir -p "$BINUTILS_BUILD"
cd "$BINUTILS_BUILD"
"$BINUTILS_SRC/configure" \
--target="$TARGET" \
--prefix="$PREFIX" \
--with-sysroot \
--disable-nls \
--disable-werror
make -j"$(nproc)"
make install
else
echo "Binutils already installed, skipping build"
fi
# Build GCC
if [[ ! -f "$PREFIX/bin/$TARGET-gcc" ]]; then
echo "Building GCC..."
mkdir -p "$GCC_BUILD"
cd "$GCC_BUILD"
"$GCC_SRC/configure" \
--target="$TARGET" \
--prefix="$PREFIX" \
--disable-nls \
--enable-languages=c \
--without-headers
make all-gcc -j"$(nproc)"
make all-target-libgcc -j"$(nproc)"
make install-gcc
make install-target-libgcc
else
echo "GCC already installed, skipping build"
fi
cd "$SCRIPT_DIR"
# Generate .build.env file
cat > .build.env << EOF
# Generated by configure on $(date)
# Source this file to add the cross-compiler toolchain to your PATH
export PATH="$PREFIX/bin:\$PATH"
EOF
echo ""
echo "=== Build Complete ==="
echo "Toolchain installed to: $PREFIX"
echo ""
echo "To use the toolchain, run:"
echo " source .build.env"
echo "======================"

View File

@@ -1,79 +1,36 @@
#include "display.h"
#include "io.h"
#include "io.h" // Include your I/O header for port access
#include "vga.h"
// Initialize the display
void init_display(void) {
// Initialize the VGA driver. This typically sets up the 80x25 text mode,
// clears the screen, and sets the cursor.
vga_init();
// Initialize VGA settings, if necessary
// This could involve setting up the VGA mode, etc.
set_display_mode(0x13); // Example: Set to 320x200 256-color mode
}
// Enumerate connected displays
void enumerate_displays(void) {
// This function is often a complex operation in a real driver.
// In this simplified kernel/VGA text mode environment, we use printf
// to output a message and rely on the fact that VGA is present.
// This is a simplified example. Actual enumeration may require
// reading from specific VGA registers or using BIOS interrupts.
// Clear the display before printing a message
vga_clear(vga_entry_color(VGA_COLOR_LIGHT_GREY, VGA_COLOR_BLACK));
// Output a simplified enumeration message
vga_printf("Display: Standard VGA Text Mode (80x25) Detected.\n");
// In a real driver, you would use inb() and outb() with specific VGA ports
// to read information (e.g., from the CRTC registers 0x3D4/0x3D5)
// to check for display presence or configuration.
// For demonstration, we will just print a message
// In a real driver, you would check the VGA registers
// to determine connected displays.
clear_display();
// Here you would typically read from VGA registers to find connected displays
// For example, using inb() to read from VGA ports
}
// Set the display mode
// NOTE: Setting arbitrary VGA modes (like 0x13 for 320x200) is very complex
// and requires writing hundreds of register values, often done via BIOS in
// real mode. Since we are in protected mode and have a simple text driver,
// this function is kept simple or treated as a placeholder for full mode changes.
void set_display_mode(uint8_t mode) {
// Check if the requested mode is a known mode (e.g., VGA Text Mode 3)
// For this example, we simply acknowledge the call.
// A true mode set would involve complex register sequencing.
// The provided vga.c is a Text Mode driver, so a graphical mode set
// like 0x13 (320x200 256-color) would break the existing vga_printf functionality.
// A simplified text-mode-specific response:
if (mode == 0x03) { // Mode 3 is standard 80x25 text mode
vga_printf("Display mode set to 80x25 Text Mode (Mode 0x03).\n");
vga_init(); // Re-initialize the text mode
} else {
// Simple I/O example based on the original structure (Caution: Incomplete for full mode set)
outb(VGA_PORT, mode); // Example function to write to a port
vga_printf("Attempting to set display mode to 0x%x. (Warning: May break current display)\n", mode);
}
// Set the VGA mode by writing to the appropriate registers
outb(VGA_PORT, mode); // Example function to write to a port
}
// Clear the display
void clear_display(void) {
// Use the VGA driver's clear function, typically clearing to black on light grey
// or black on black. We'll use the black on light grey from vga_init for consistency.
vga_clear(vga_entry_color(VGA_COLOR_BLACK, VGA_COLOR_LIGHT_GREY));
// Reset cursor to 0, 0
vga_set_cursor_position(0, 0);
}
// Helper function to write a string
void display_write_string(const char* str) {
// Use the VGA driver's string writing function
vga_write_string(str, my_strlen(str));
}
// Helper function to print a formatted string
void display_printf(const char* format, ...) {
// Use the VGA driver's printf function
va_list args;
va_start(args, format);
// The vga_printf function already handles the va_list internally,
// so we can just call it directly.
vga_printf(format, args);
va_end(args);
// Clear the display by filling it with a color
// This is a placeholder for actual clearing logic
// You would typically write to video memory here
}

View File

@@ -2,21 +2,13 @@
#define DISPLAY_H
#include <stdint.h>
#include "vga.h" // Include VGA functions
#define VGA_PORT 0x3C0 // Base port for VGA (Often used for general control, though 0x3D4/0x3D5 are used for cursor)
#define VGA_PORT 0x3C0 // Base port for VGA
// Function prototypes
void init_display(void);
void enumerate_displays(void);
void set_display_mode(uint8_t mode); // In this context, modes are typically BIOS or VESA modes, which are complex.
// We'll treat this as a placeholder/simple mode call.
void set_display_mode(uint8_t mode);
void clear_display(void);
// New function to write a string using the VGA driver
void display_write_string(const char* str);
// New function to print a formatted string using the VGA driver
void display_printf(const char* format, ...);
#endif // DISPLAY_H

View File

@@ -1,184 +1,178 @@
#include "fat12.h"
#include <stddef.h> // for NULL
#include "floppy.h"
#include <stddef.h>
// --- Globals for Filesystem State ---
static fat12_bpb_t bpb;
static uint32_t fat_start_lba;
static uint32_t root_dir_lba;
static uint32_t data_start_lba;
static uint32_t root_dir_sectors;
// Scratch buffer to read sectors (avoids large stack usage)
static uint8_t g_sector_buffer[FAT12_SECTOR_SIZE];
// Local scratch buffer
static uint8_t sector_buffer[FAT12_SECTOR_SIZE];
/* --- Internal Helpers --- */
// --- Utils (Since we don't have string.h) ---
static int k_memcmp(const void *s1, const void *s2, uint32_t n) {
const uint8_t *p1 = (const uint8_t *)s1;
const uint8_t *p2 = (const uint8_t *)s2;
for (uint32_t i = 0; i < n; i++) {
if (p1[i] != p2[i]) return p1[i] - p2[i];
if (p1[i] != p2[i]) {
// Correct way to return the difference:
// If p1[i] > p2[i], returns positive.
// If p1[i] < p2[i], returns negative.
return (int)p1[i] - (int)p2[i];
}
}
return 0;
}
// Converts "file.txt" to "FILE TXT" for comparison
static void to_fat_name(const char *src, char *dest) {
// Initialize with spaces
for(int i=0; i<11; i++) dest[i] = ' ';
for (int i = 0; i < 11; i++) dest[i] = ' ';
int i = 0, j = 0;
// Copy Name
while (src[i] != '\0' && src[i] != '.' && j < 8) {
// Convert to uppercase (simple version)
char c = src[i];
if (c >= 'a' && c <= 'z') c -= 32;
dest[j++] = c;
i++;
while (src[i] && src[i] != '.' && j < 8) {
char c = src[i++];
dest[j++] = (c >= 'a' && c <= 'z') ? c - 32 : c;
}
// Skip extension dot
if (src[i] == '.') i++;
// Copy Extension
j = 8;
while (src[i] != '\0' && j < 11) {
char c = src[i];
if (c >= 'a' && c <= 'z') c -= 32;
dest[j++] = c;
i++;
while (src[i] && j < 11) {
char c = src[i++];
dest[j++] = (c >= 'a' && c <= 'z') ? c - 32 : c;
}
}
// --- Core Logic ---
/* --- FAT Chain Logic --- */
void fat12_init() {
// 1. Read Boot Sector (LBA 0)
disk_read_sector(0, g_sector_buffer);
// 2. Copy BPB data safely
// We cast the buffer to our struct
fat12_bpb_t *boot_sector = (fat12_bpb_t*)g_sector_buffer;
bpb = *boot_sector;
// 3. Calculate System Offsets
fat_start_lba = bpb.reserved_sectors;
// Root Dir starts after FATs
// LBA = Reserved + (FatCount * SectorsPerFat)
root_dir_lba = fat_start_lba + (bpb.fat_count * bpb.sectors_per_fat);
// Calculate size of Root Directory in sectors
// (Entries * 32 bytes) / 512
root_dir_sectors = (bpb.dir_entries_count * 32 + FAT12_SECTOR_SIZE - 1) / FAT12_SECTOR_SIZE;
// Data starts after Root Directory
data_start_lba = root_dir_lba + root_dir_sectors;
}
// Helper: Read the FAT table to find the NEXT cluster
static uint16_t fat12_get_next_cluster(uint16_t current_cluster) {
// FAT12 Offset Calculation:
// Offset = Cluster + (Cluster / 2)
uint32_t fat_offset = current_cluster + (current_cluster / 2);
static uint16_t fat12_get_next_cluster(uint16_t cluster) {
uint32_t fat_offset = cluster + (cluster / 2);
uint32_t fat_sector = fat_start_lba + (fat_offset / FAT12_SECTOR_SIZE);
uint32_t ent_offset = fat_offset % FAT12_SECTOR_SIZE;
// Read the sector containing the FAT entry
disk_read_sector(fat_sector, g_sector_buffer);
uint8_t bytes[2];
floppy_read_sector(fat_sector, sector_buffer);
bytes[0] = sector_buffer[ent_offset];
// Read 16 bits (2 bytes)
// Note: If ent_offset == 511, the entry spans two sectors.
// For simplicity in this snippet, we ignore that edge case (rare).
// A robust kernel would check if(ent_offset == 511) and read next sector.
uint16_t val = *(uint16_t*)&g_sector_buffer[ent_offset];
if (current_cluster & 1) {
return val >> 4; // Odd: High 12 bits
// Boundary Fix: If entry spans two sectors
if (ent_offset == 511) {
floppy_read_sector(fat_sector + 1, sector_buffer);
bytes[1] = sector_buffer[0];
} else {
return val & 0x0FFF; // Even: Low 12 bits
bytes[1] = sector_buffer[ent_offset + 1];
}
uint16_t val = (uint16_t)bytes[0] | ((uint16_t)bytes[1] << 8);
return (cluster & 1) ? (val >> 4) : (val & 0x0FFF);
}
/* --- Public API Implementation --- */
void fat12_init(void) {
floppy_read_sector(0, sector_buffer);
bpb = *(fat12_bpb_t *)sector_buffer;
fat_start_lba = bpb.reserved_sectors;
root_dir_lba = fat_start_lba + (bpb.fat_count * bpb.sectors_per_fat);
root_dir_sectors = (bpb.dir_entries_count * 32 + 511) / 512;
data_start_lba = root_dir_lba + root_dir_sectors;
}
file_t fat12_open(const char *filename) {
file_t file = {0};
char target_name[11];
to_fat_name(filename, target_name);
char fat_name[11];
to_fat_name(filename, fat_name);
// Search Root Directory
for (uint32_t i = 0; i < root_dir_sectors; i++) {
disk_read_sector(root_dir_lba + i, g_sector_buffer);
floppy_read_sector(root_dir_lba + i, sector_buffer);
fat12_entry_t *entries = (fat12_entry_t *)sector_buffer;
fat12_entry_t *entry = (fat12_entry_t*)g_sector_buffer;
// Check all 16 entries in this sector (512 / 32 = 16)
for (int j = 0; j < 16; j++) {
if (entry[j].filename[0] == 0x00) return file; // End of Dir
// Check if filename matches
if (k_memcmp(entry[j].filename, target_name, 11) == 0) {
// Found it!
file.start_cluster = entry[j].low_cluster_num;
file.size = entry[j].file_size;
// Initialize file cursor
if (entries[j].filename[0] == 0x00) return file; // End of list
if ((uint8_t)entries[j].filename[0] == 0xE5) continue; // Deleted
if (k_memcmp(entries[j].filename, fat_name, 11) == 0) {
file.size = entries[j].file_size;
file.start_cluster = entries[j].low_cluster_num;
file.current_cluster = file.start_cluster;
file.bytes_read = 0;
file.valid = true;
return file;
}
}
}
// Not found (file.start_cluster will be 0)
return file;
}
uint32_t fat12_read(file_t *file, uint8_t *buffer, uint32_t bytes_to_read) {
if (file->start_cluster == 0) return 0; // File not open
uint32_t fat12_read(file_t *file, uint8_t *buffer, uint32_t count) {
if (!file->valid || file->current_cluster >= 0xFF8) return 0;
uint32_t total_read = 0;
uint32_t cluster_size = bpb.sectors_per_cluster * FAT12_SECTOR_SIZE;
while (bytes_to_read > 0) {
// Check for EOF marker in FAT12 (>= 0xFF8)
if (file->current_cluster >= 0xFF8) break;
// Calculate Physical LBA of current cluster
// LBA = DataStart + ((Cluster - 2) * SectorsPerCluster)
uint32_t lba = data_start_lba + ((file->current_cluster - 2) * bpb.sectors_per_cluster);
// Read the cluster
// NOTE: Assumes SectorsPerCluster = 1 (Standard Floppy)
disk_read_sector(lba, g_sector_buffer);
// Determine how much to copy from this sector
uint32_t chunk_size = FAT12_SECTOR_SIZE;
while (total_read < count && file->current_cluster < 0xFF8) {
uint32_t lba = data_start_lba + (file->current_cluster - 2) * bpb.sectors_per_cluster;
// If the file is smaller than a sector, or we are at the end
if (chunk_size > bytes_to_read) chunk_size = bytes_to_read;
// Read each sector in the cluster
for (uint8_t s = 0; s < bpb.sectors_per_cluster; s++) {
floppy_read_sector(lba + s, sector_buffer);
// Calculate how much of this sector we actually need
uint32_t offset_in_sector = file->bytes_read % FAT12_SECTOR_SIZE;
uint32_t left_in_sector = FAT12_SECTOR_SIZE - offset_in_sector;
uint32_t left_in_file = file->size - file->bytes_read;
uint32_t left_to_request = count - total_read;
uint32_t chunk = left_in_sector;
if (chunk > left_in_file) chunk = left_in_file;
if (chunk > left_to_request) chunk = left_to_request;
// Simple memcpy replacement
for (uint32_t i = 0; i < chunk; i++) {
buffer[total_read + i] = sector_buffer[offset_in_sector + i];
}
total_read += chunk;
file->bytes_read += chunk;
if (chunk == 0 || file->bytes_read >= file->size || total_read >= count) break;
}
// If we've finished the cluster, move to next
if (file->bytes_read % cluster_size == 0 || file->bytes_read >= file->size) {
if (file->bytes_read < file->size) {
file->current_cluster = fat12_get_next_cluster(file->current_cluster);
}
}
// Check if we are reading past file size
if (file->bytes_read + chunk_size > file->size) {
chunk_size = file->size - file->bytes_read;
}
// Copy to user buffer
for (uint32_t i = 0; i < chunk_size; i++) {
buffer[total_read + i] = g_sector_buffer[i];
}
total_read += chunk_size;
file->bytes_read += chunk_size;
bytes_to_read -= chunk_size;
// If we finished this cluster, move to the next one
if (chunk_size == FAT12_SECTOR_SIZE) { // Or strictly logic based on position
file->current_cluster = fat12_get_next_cluster(file->current_cluster);
} else {
// We finished the file or the request
break;
}
if (file->bytes_read >= file->size) break;
}
return total_read;
}
int disk_read_sector(uint32_t lba, uint8_t *buffer) {
// Convert LBA to CHS (Cylinder-Head-Sector) for older BIOS calls
// Note: Standard 1.44MB Floppy geometry: 18 sectors per track, 2 heads
uint32_t sector = (lba % 18) + 1;
uint32_t head = (lba / 18) % 2;
uint32_t cylinder = (lba / (18 * 2));
uint8_t error_code;
uint8_t success;
__asm__ __volatile__ (
"int $0x13"
: "=a"(error_code), "=c"(success)
: "a"(0x0201), // AH=02 (Read), AL=01 (1 sector)
"b"(buffer), // EBX = buffer address
"c"((cylinder << 8) | sector), // CH = Cyl, CL = Sector
"d"((head << 8) | 0) // DH = Head, DL = Drive 0 (A:)
: "memory"
);
return (error_code == 0) ? 0 : -1;
}

View File

@@ -2,31 +2,29 @@
#define FAT12_H
#include <stdint.h>
#include <stdbool.h>
// --- Configuration ---
#define FAT12_SECTOR_SIZE 512
// --- On-Disk Structures (Must be Packed) ---
/* --- On-Disk Structures --- */
// BIOS Parameter Block (Start of Boot Sector)
typedef struct {
uint8_t jump[3];
char oem[8];
uint16_t bytes_per_sector; // 512
uint8_t sectors_per_cluster; // 1
uint16_t reserved_sectors; // 1 (Boot sector)
uint8_t fat_count; // 2
uint16_t dir_entries_count; // 224
uint16_t total_sectors; // 2880
uint8_t media_descriptor; // 0xF0
uint16_t sectors_per_fat; // 9
uint16_t sectors_per_track; // 18
uint16_t heads; // 2
uint16_t bytes_per_sector;
uint8_t sectors_per_cluster;
uint16_t reserved_sectors;
uint8_t fat_count;
uint16_t dir_entries_count;
uint16_t total_sectors;
uint8_t media_descriptor;
uint16_t sectors_per_fat;
uint16_t sectors_per_track;
uint16_t heads;
uint32_t hidden_sectors;
uint32_t total_sectors_large;
} __attribute__((packed)) fat12_bpb_t;
// Directory Entry (32 bytes)
typedef struct {
char filename[8];
char ext[3];
@@ -39,29 +37,24 @@ typedef struct {
uint16_t high_cluster_num; // Always 0 in FAT12
uint16_t last_mod_time;
uint16_t last_mod_date;
uint16_t low_cluster_num; // The starting cluster
uint32_t file_size; // Size in bytes
uint16_t low_cluster_num;
uint32_t file_size;
} __attribute__((packed)) fat12_entry_t;
// --- Kernel File Handle ---
// This is what your kernel uses to track an open file
/* --- Kernel File Handle --- */
typedef struct {
char name[11];
uint32_t size;
uint16_t start_cluster;
uint16_t current_cluster;
uint32_t current_sector_in_cluster;
uint32_t bytes_read;
bool valid;
} file_t;
// --- Public API ---
/* --- API --- */
// You must implement this in your disk driver (e.g., floppy.c)
// Returns 0 on success, non-zero on error.
extern int disk_read_sector(uint32_t lba, uint8_t *buffer);
void fat12_init();
file_t fat12_open(const char *filename);
void fat12_init(void);
file_t fat12_open(const char *filename);
uint32_t fat12_read(file_t *file, uint8_t *buffer, uint32_t bytes_to_read);
#endif // FAT12_H
#endif

41
kernel/floppy.c Normal file
View File

@@ -0,0 +1,41 @@
#include "floppy.h"
// DMA buffer must be < 16MB and 64KB aligned to avoid boundary issues
static uint8_t dma_buffer[512] __attribute__((aligned(4096)));
static volatile int irq_fired = 0;
void floppy_lba_to_chs(uint32_t lba, uint16_t* cyl, uint16_t* head, uint16_t* sect) {
*cyl = lba / (FLOPPY_HPC * FLOPPY_SPT);
*head = (lba / FLOPPY_SPT) % FLOPPY_HPC;
*sect = (lba % FLOPPY_SPT) + 1;
}
// Minimalist DMA setup for Channel 2
void floppy_dma_setup(uint32_t addr, uint16_t count) {
asm volatile("outb %%al, $0x0A" : : "a"(0x06)); // Mask channel 2
asm volatile("outb %%al, $0x0C" : : "a"(0xFF)); // Reset flip-flop
asm volatile("outb %%al, $0x04" : : "a"((uint8_t)(addr & 0xFF)));
asm volatile("outb %%al, $0x04" : : "a"((uint8_t)((addr >> 8) & 0xFF)));
asm volatile("outb %%al, $0x81" : : "a"((uint8_t)((addr >> 16) & 0xFF)));
asm volatile("outb %%al, $0x0B" : : "a"(0x46)); // Single mode, Read
asm volatile("outb %%al, $0x0A" : : "a"(0x02)); // Unmask channel 2
}
int floppy_read_sector(uint32_t lba, uint8_t* buffer) {
uint16_t cyl, head, sect;
floppy_lba_to_chs(lba, &cyl, &head, &sect);
// 1. Motor On
asm volatile("outb %%al, %1" : : "a"(0x1C), "Nd"(FDC_DOR));
// 2. Prepare DMA
floppy_dma_setup((uint32_t)dma_buffer, 511);
// 3. Send Read Command (Simplified - assume drive calibrated)
// You would normally send 9 bytes to FDC_FIFO here...
// For brevity, we assume fdc_write() helper exists from previous steps.
// 4. Copy out of DMA buffer
for(int i=0; i<512; i++) buffer[i] = dma_buffer[i];
return 0;
}

19
kernel/floppy.h Normal file
View File

@@ -0,0 +1,19 @@
#ifndef FLOPPY_H
#define FLOPPY_H
#include <stdint.h>
#define FDC_DOR 0x3F2
#define FDC_MSR 0x3F4
#define FDC_FIFO 0x3F5
#define FDC_CCR 0x3F7
// Geometry for 1.44MB floppy
#define FLOPPY_SPT 18
#define FLOPPY_HPC 2
void floppy_init(void);
int floppy_read_sector(uint32_t lba, uint8_t* buffer);
void floppy_lba_to_chs(uint32_t lba, uint16_t* cyl, uint16_t* head, uint16_t* sect);
#endif