17 Commits

Author SHA1 Message Date
86608ef48c Merge pull request #90 from gbowne1/gbowne1-patch-2
Fix extern declaration for disk_read_sector function
2026-01-10 21:31:34 -08:00
785c8920d8 Merge pull request #86 from gbowne1/gbowne1-cpuidfix-1
IImplement CPUID support check and CPU info printing
2026-01-09 11:59:52 -08:00
c0e7ab6be0 Fix k_memcmp return logic and add disk_read_sector
Refactor k_memcmp to return correct difference and add disk_read_sector function.
2026-01-08 21:10:35 -08:00
f78bc27f35 Fix extern declaration for disk_read_sector function 2026-01-08 21:03:10 -08:00
507b4f5511 Merge pull request #89 from vmttmv/fix/bl-bounds
Establish well-defined read buffers for bl, implement error printing
2026-01-07 21:00:00 -08:00
Borna Šoštarić
12046ce96b fix vga clear section in on_error 2026-01-08 05:20:42 +01:00
vmttmv
a9b8ac7066 Establish well-defined read buffers for bl, implement error printing 2026-01-07 02:33:46 +02:00
d6ab8c91f8 Merge pull request #87 from vmttmv/fix/bl-nonaligned-reads
Fix non-aligned disk reads in bootloader
2026-01-05 17:45:37 -08:00
vmttmv
35ebd5fd72 Fix non-aligned disk reads in bootloader 2026-01-06 00:44:55 +02:00
10d3761be1 Enhance cpu.h with Intel model definitions and struct
Added Intel model definitions and CPU info structure.
2026-01-05 00:46:14 -08:00
cc2e967a4d Implement CPUID support check and CPU info printing
Added functions to check CPUID support and print CPU details.
2026-01-05 00:42:05 -08:00
9eae2e1005 Merge pull request #84 from shoshta73/RWXPerms
[fix] LOAD segment with RWX permissions
2025-12-30 17:19:16 -08:00
Borna Šoštarić
bd4236ad9b fix RWX perms warnings in link step 2025-12-31 01:39:18 +01:00
5292808934 Merge pull request #83 from vmttmv/main
Fix BL disk read status polls
2025-12-30 16:13:42 -08:00
vmttmv
09c48c2f50 fix stage2.asm: disk reads wait for BSY 2025-12-30 05:08:54 +02:00
caea475daf Merge pull request #79 from shoshta73/klibc
Initial implementation of klibc
2025-12-27 11:14:45 -08:00
Borna Šoštarić
f30be3ddd5 initial implementation of klibc
fix linker error about ctx_switch
2025-12-27 19:44:54 +01:00
25 changed files with 656 additions and 477 deletions

2
.gitignore vendored
View File

@@ -1,3 +1,5 @@
.build.env
build
cross
.cache/
compile_commands.json

View File

@@ -6,6 +6,7 @@ QEMU= qemu-system-i386
OBJCOPY = i386-elf-objcopy
BUILD_DIR = build
CROSS_DIR = cross
DISK_IMG = $(BUILD_DIR)/disk.img
STAGE2_SIZE = 2048
@@ -14,6 +15,9 @@ KERNEL_ASM_SRC = $(wildcard kernel/*.asm)
KERNEL_OBJ = $(patsubst kernel/%.c, $(BUILD_DIR)/%.o, $(KERNEL_C_SRC))
KERNEL_OBJ += $(patsubst kernel/%.asm, $(BUILD_DIR)/asm_%.o, $(KERNEL_ASM_SRC))
KLIBC_SRC = $(wildcard klibc/src/*.c)
KLIBC_OBJ = $(patsubst klibc/src/%.c, $(BUILD_DIR)/klibc/%.o, $(KLIBC_SRC))
all: $(DISK_IMG)
.PHONY: stage1 stage2 kernel run gdb clean
@@ -26,7 +30,7 @@ stage1: $(BUILD_DIR)
# Alternatively, convey the final stage2 size through other means to stage1.
stage2: $(BUILD_DIR)
$(AS) $(ASFLAGS) -o $(BUILD_DIR)/stage2.o bootloader/stage2.asm
$(CC) -std=c11 -ffreestanding -nostdlib -fno-stack-protector -m32 -g -c -o $(BUILD_DIR)/stage2_load.o bootloader/stage2_load.c
$(CC) -std=c11 -ffreestanding -nostdlib -nostdinc -fno-stack-protector -m32 -Iklibc/include -g -c -o $(BUILD_DIR)/stage2_load.o bootloader/stage2_load.c
$(LD) -Tbootloader/stage2.ld -melf_i386 -o $(BUILD_DIR)/$@.elf $(BUILD_DIR)/stage2.o $(BUILD_DIR)/stage2_load.o
$(OBJCOPY) -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin
truncate -s $(STAGE2_SIZE) $(BUILD_DIR)/$@.bin
@@ -35,10 +39,13 @@ $(BUILD_DIR)/asm_%.o: kernel/%.asm
$(AS) $(ASFLAGS) -o $@ $<
$(BUILD_DIR)/%.o: kernel/%.c
$(CC) -std=c11 -ffreestanding -nostdlib -fno-stack-protector -m32 -g -c -o $@ $<
$(CC) -std=c11 -ffreestanding -nostdlib -nostdinc -fno-stack-protector -m32 -Iklibc/include -g -c -o $@ $<
kernel: $(KERNEL_OBJ) | $(BUILD_DIR)
$(LD) -melf_i386 -Tkernel/linker.ld -o $(BUILD_DIR)/kernel.elf $(KERNEL_OBJ)
$(BUILD_DIR)/klibc/%.o: klibc/src/%.c
$(CC) -std=c11 -ffreestanding -nostdlib -nostdinc -fno-stack-protector -m32 -Iklibc/include -g -c -o $@ $<
kernel: $(KERNEL_OBJ) | $(BUILD_DIR) $(KLIBC_OBJ)
$(LD) -melf_i386 -Tkernel/linker.ld -o $(BUILD_DIR)/kernel.elf $(KERNEL_OBJ) $(KLIBC_OBJ)
$(DISK_IMG): stage1 stage2 kernel
dd if=$(BUILD_DIR)/stage1.bin of=$@
@@ -48,6 +55,7 @@ $(DISK_IMG): stage1 stage2 kernel
$(BUILD_DIR):
mkdir -p $@
mkdir -p $(BUILD_DIR)/klibc
run:
qemu-system-i386 -s -S $(DISK_IMG)
@@ -57,4 +65,9 @@ gdb:
clean:
rm -rf $(BUILD_DIR)
clean-cross:
rm -rf $(CROSS_DIR)
rm -rf .build.env
clean-all: clean clean-cross

View File

@@ -24,75 +24,3 @@ _start:
call load_kernel
jmp eax
; ----------------------------------------------------------------------------
; ATA read sectors (LBA mode)
;
; sysv32 abi signature:
; void ata_lba_read(uint32_t lba, uint8_t nsect, void *addr);
; ----------------------------------------------------------------------------
ata_lba_read:
push ebp
mov ebp, esp
push ebx
push ecx
push edx
push edi
mov eax, [ebp+8] ; arg #1 = LBA
mov cl, [ebp+12] ; arg #2 = # of sectors
mov edi, [ebp+16] ; arg #3 = buffer address
and eax, 0x0FFFFFFF
mov ebx, eax ; Save LBA in RBX
mov edx, 0x01F6 ; Port to send drive and bit 24 - 27 of LBA
shr eax, 24 ; Get bit 24 - 27 in al
or al, 11100000b ; Set bit 6 in al for LBA mode
out dx, al
mov edx, 0x01F2 ; Port to send number of sectors
mov al, cl ; Get number of sectors from CL
out dx, al
mov edx, 0x1F3 ; Port to send bit 0 - 7 of LBA
mov eax, ebx ; Get LBA from EBX
out dx, al
mov edx, 0x1F4 ; Port to send bit 8 - 15 of LBA
mov eax, ebx ; Get LBA from EBX
shr eax, 8 ; Get bit 8 - 15 in AL
out dx, al
mov edx, 0x1F5 ; Port to send bit 16 - 23 of LBA
mov eax, ebx ; Get LBA from EBX
shr eax, 16 ; Get bit 16 - 23 in AL
out dx, al
mov edx, 0x1F7 ; Command port
mov al, 0x20 ; Read with retry.
out dx, al
mov bl, cl ; Save # of sectors in BL
.wait_drq:
mov edx, 0x1F7
.do_wait_drq:
in al, dx
test al, 8 ; the sector buffer requires servicing.
jz .do_wait_drq ; keep polling until the sector buffer is ready.
mov edx, 0x1F0 ; Data port, in and out
mov ecx, 256
rep insw ; in to [RDI]
dec bl ; are we...
jnz .wait_drq ; ...done?
pop edi
pop edx
pop ecx
pop ebx
pop ebp
ret

View File

@@ -9,6 +9,4 @@ SECTIONS {
*(.bss*)
*(COMMON)
}
read_buf = .;
}

View File

@@ -1,11 +1,39 @@
#include <stddef.h>
#include <stdint.h>
// ATA IO Ports
#define ATA_PRIMARY_DATA 0x1F0
#define ATA_PRIMARY_ERR_FEATURES 0x1F1
#define ATA_PRIMARY_SEC_COUNT 0x1F2
#define ATA_PRIMARY_LBA_LOW 0x1F3
#define ATA_PRIMARY_LBA_MID 0x1F4
#define ATA_PRIMARY_LBA_HIGH 0x1F5
#define ATA_PRIMARY_DRIVE_SEL 0x1F6
#define ATA_PRIMARY_COMM_STAT 0x1F7
// ATA Commands
#define ATA_CMD_READ_PIO 0x20
#define ATA_CMD_WRITE_PIO 0x30
// ELF Ident indexes
#define EI_NIDENT 16
#define EI_NIDENT 16
// Program header types
#define PT_NULL 0
#define PT_LOAD 1
#define PT_NULL 0
#define PT_LOAD 1
// Disk sector size
#define SECTOR_SIZE 512
#define PH_PER_SECTOR (SECTOR_SIZE / sizeof(Elf32_Phdr))
// Kernel start LBA
#define KERN_START_SECT 5
// VGA
// Expects bios initialization for text mode (3), buffer at 0xb8000
#define VGA_ADDRESS 0xB8000
#define VGA_COLS 80
#define VGA_ROWS 25
// ELF Header (32-bit)
typedef struct {
@@ -37,82 +65,171 @@ typedef struct {
uint32_t p_align;
} __attribute__((packed)) Elf32_Phdr;
static inline uint8_t inb(uint16_t port)
{
uint8_t ret;
__asm__ volatile ("inb %1, %0"
: "=a"(ret)
: "Nd"(port));
return ret;
}
static inline void outb(uint16_t port, uint8_t val)
{
__asm__ volatile ("outb %0, %1"
:
: "a"(val), "Nd"(port));
}
static inline uint16_t inw(uint16_t port)
{
uint16_t ret;
__asm__ volatile ("inw %1, %0"
: "=a"(ret)
: "Nd"(port));
return ret;
}
static inline void ata_wait_bsy() {
while (inb(ATA_PRIMARY_COMM_STAT) & 0x80);
}
static inline void ata_wait_drq() {
while (!(inb(ATA_PRIMARY_COMM_STAT) & 0x08));
}
static void ata_read_sector(void *addr, uint32_t lba) {
ata_wait_bsy();
outb(ATA_PRIMARY_DRIVE_SEL, 0xE0 | ((lba >> 24) & 0x0F));
outb(ATA_PRIMARY_SEC_COUNT, 1);
outb(ATA_PRIMARY_LBA_LOW, (uint8_t)lba);
outb(ATA_PRIMARY_LBA_MID, (uint8_t)(lba >> 8));
outb(ATA_PRIMARY_LBA_HIGH, (uint8_t)(lba >> 16));
outb(ATA_PRIMARY_COMM_STAT, ATA_CMD_READ_PIO);
uint16_t* ptr = (uint16_t*)addr;
ata_wait_bsy();
ata_wait_drq();
for (int i = 0; i < 256; i++) {
*ptr++ = inw(ATA_PRIMARY_DATA);
}
}
static void ata_read_sectors(uint8_t *addr, uint32_t offset, uint32_t size)
{
// Reads are offset from the starting sector of the kernel
uint32_t lba = KERN_START_SECT + offset / SECTOR_SIZE;
uint32_t off = offset % 512;
uint8_t data[512];
while (size > 0) {
ata_read_sector(data, lba);
uint32_t copy = 512 - off;
if (copy > size) {
copy = size;
}
for (uint32_t i = 0; i < copy; i++) {
addr[i] = data[off + i];
}
addr += copy;
size -= copy;
lba++;
off = 0;
}
}
static void on_error(const char *msg)
{
uint16_t *ptr = (uint16_t *)VGA_ADDRESS;
// Clear
uint16_t val = 0x0f00 | (uint8_t)' ';
for (size_t i = 0; i < VGA_COLS * VGA_ROWS; i++) {
ptr[i] = val;
}
// Print error
for (size_t i = 0; msg[i]; i++) {
ptr[i] = 0xf00 | (uint8_t)msg[i];
}
// Halt
while (1) {
__asm__("hlt");
}
}
// Load an ELF executable into memory.
static int elf_load(const void* data, void (*load_segment)(uint8_t *vaddr, uint32_t src, uint32_t size)) {
const Elf32_Ehdr* header = (const Elf32_Ehdr*)data;
const Elf32_Phdr* ph = (const Elf32_Phdr*)((uint8_t*)data + header->e_phoff);
// NOTE: Only 32-byte program headers are supported.
// Returns the entry point to the program.
static void *elf_load(const void *data) {
const Elf32_Ehdr *header = (const Elf32_Ehdr*)data;
if (header->e_phentsize != sizeof(Elf32_Phdr)) {
// The bootloader only handles 32-byte program header entries
on_error("ERROR: Unsupported program header entry size, halting...");
}
// Buffer for the program headers
uint8_t file_buf[SECTOR_SIZE];
// Current file offset to the next program header
uint32_t file_offset = header->e_phoff;
for (int i = 0; i < header->e_phnum; i++) {
if (ph[i].p_type != PT_LOAD)
// Check for sector boundary.
// Program headers are read in a sector at a time
// 512 / 32 = 16 PH per sector
if (i % PH_PER_SECTOR == 0) {
uint32_t count = (header->e_phnum - i) * sizeof(Elf32_Phdr);
if (count > SECTOR_SIZE) {
count = SECTOR_SIZE;
}
// Reads
ata_read_sectors(file_buf, file_offset, count);
file_offset += count;
}
// PH being processed currently, index mod 16 as headers
// are being loaded in sector by sector.
const Elf32_Phdr *ph = (const Elf32_Phdr *)file_buf + (i % PH_PER_SECTOR);
// Discard non-load segments
if (ph->p_type != PT_LOAD)
continue;
uint32_t offset = ph[i].p_offset;
uint32_t vaddr = ph[i].p_vaddr;
uint32_t filesz = ph[i].p_filesz;
uint32_t memsz = ph[i].p_memsz;
// Copy data segment
//load_segment((uint8_t *)vaddr, offset, filesz);
load_segment((uint8_t *)vaddr, offset, filesz);
// Load in the segment
uint32_t offset = ph->p_offset;
uint32_t filesz = ph->p_filesz;
uint32_t memsz = ph->p_memsz;
uint8_t *vaddr = (uint8_t *)ph->p_vaddr;
ata_read_sectors(vaddr, offset, filesz);
// Zero remaining BSS (if any)
if (memsz > filesz) {
uint8_t* bss_start = (uint8_t*)(vaddr + filesz);
uint8_t* bss_start = vaddr + filesz;
for (uint32_t j = 0; j < memsz - filesz; j++) {
bss_start[j] = 0;
}
}
}
return header->e_entry;
}
#define KERN_START_SECT 5
#define MAX(a, b) ((a)>(b) ? (a) : (b))
extern void ata_lba_read(uint32_t lba, uint8_t nsect, void *addr);
extern uint8_t read_buf[];
static uint32_t
total_header_size(const Elf32_Ehdr *header) {
uint32_t phend = header->e_phoff + header->e_phentsize*header->e_phnum;
// Align to 512
return (phend + 511) & ~511;
}
static void read_sectors(uint8_t *vaddr, uint32_t offset, uint32_t size) {
// # of sectors to read
uint32_t rem_nsect = ((size + 511) & ~511) / 512;
// Current lba address, offset by the first sector already read
uint32_t lba = KERN_START_SECT + offset / 512;
// Max 255 sectors at a time
while (rem_nsect) {
uint8_t nsect = rem_nsect > 255 ? 255 : rem_nsect;
ata_lba_read(lba, nsect, vaddr);
vaddr += nsect * 512;
rem_nsect -= nsect;
lba += nsect;
}
// Return the entry point
return (void *)header->e_entry;
}
void *load_kernel(void) {
// Read the first sector
ata_lba_read(KERN_START_SECT, 1, read_buf);
// ELF header buffer
uint8_t header_buf[SECTOR_SIZE];
const Elf32_Ehdr* header = (const Elf32_Ehdr*)read_buf;
// Read the first sector (contains the ELF header)
ata_read_sector(header_buf, KERN_START_SECT);
// Remaining data size, subtract the first 512B already read
uint32_t rem = total_header_size(header) - 512;
// Read the rest if necessary
if (rem)
read_sectors(read_buf+512, 512, rem);
elf_load(read_buf, read_sectors);
return (void *)header->e_entry;
// `elf_load()` returns the entry point
return elf_load(header_buf);
}

View File

@@ -1,4 +1,4 @@
.global ctx_switch
global ctx_switch
; void ctx_switch(uint32_t **old_sp_ptr, uint32_t *new_sp);
; Arguments on stack (cdecl convention):

View File

@@ -2,36 +2,98 @@
#include "serial.h"
#include "terminal.h"
#include "utils.h"
#include "print.h"
void cpuid(uint32_t function, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) {
__asm__(
"cpuid"
: "=a"(*eax), "=b"(*ebx), "=c"(*ecx), "=d"(*edx)
: "a"(function)
);
// Helper to print a labeled decimal value
void print_val(const char* label, uint32_t val) {
char buf[12];
utoa(val, buf, 10);
terminal_write(label);
terminal_write(buf);
terminal_write(" ");
}
// Safely check if CPUID is supported by attempting to flip bit 21 of EFLAGS
int check_cpuid_supported() {
uint32_t f1, f2;
__asm__ volatile (
"pushfl\n\t"
"pushfl\n\t"
"popl %0\n\t"
"movl %0, %1\n\t"
"xorl $0x200000, %0\n\t"
"pushl %0\n\t"
"popfl\n\t"
"pushfl\n\t"
"popl %0\n\t"
"popfl\n\t"
: "=&r" (f1), "=&r" (f2));
return ((f1 ^ f2) & 0x200000) != 0;
}
void identify_cpu() {
if (!check_cpuid_supported()) {
terminal_write("CPUID not supported. Likely a 386 or early 486.\n");
return;
}
uint32_t eax, ebx, ecx, edx;
char vendor[13];
// Leaf 0: Vendor String & Max Leaf
cpuid(0, &eax, &ebx, &ecx, &edx);
uint32_t max_leaf = eax;
*(uint32_t *)&vendor[0] = ebx;
*(uint32_t *)&vendor[4] = edx;
*(uint32_t *)&vendor[8] = ecx;
vendor[12] = '\0';
terminal_write("CPU Vendor: ");
terminal_write("Vendor: ");
terminal_write(vendor);
terminal_write("\n");
serial_write("CPU Vendor: ");
serial_write(vendor);
serial_write("\n");
// Leaf 1: Family, Model, Stepping
if (max_leaf >= 1) {
cpuid(1, &eax, &ebx, &ecx, &edx);
uint32_t stepping = eax & 0xF;
uint32_t model = (eax >> 4) & 0xF;
uint32_t family = (eax >> 8) & 0xF;
uint32_t type = (eax >> 12) & 0x3;
terminal_write("CPUID max leaf: ");
print_hex(eax, false, false); // You must implement this (see below)
terminal_write("\n");
// Handle Extended Family/Model (Required for Pentium 4 and newer)
if (family == 0xF) {
family += (eax >> 20) & 0xFF;
model += ((eax >> 16) & 0xF) << 4;
}
print_val("Family:", family);
print_val("Model:", model);
print_val("Step:", stepping);
terminal_write("\n");
}
// Leaf 2: Cache Descriptors
if (max_leaf >= 2) {
cpuid(2, &eax, &ebx, &ecx, &edx);
terminal_write("Cache Descriptors: ");
// Note: Leaf 2 returns a list of 1-byte descriptors in the registers.
// We look for common Intel ones:
uint32_t regs[4] = {eax, ebx, ecx, edx};
for (int i = 0; i < 4; i++) {
if (regs[i] & 0x80000000) continue; // Reserved bit
for (int j = 0; j < 4; j++) {
uint8_t desc = (regs[i] >> (j * 8)) & 0xFF;
if (desc == 0) continue;
// Example decoding for specific chips you mentioned:
if (desc == 0x06) terminal_write("8KB L1 I-Cache ");
if (desc == 0x0A) terminal_write("8KB L1 D-Cache ");
if (desc == 0x41) terminal_write("128KB L2 ");
if (desc == 0x43) terminal_write("512KB L2 ");
if (desc == 0x2C) terminal_write("32KB L1 D-Cache ");
}
}
terminal_write("\n");
}
}

View File

@@ -2,8 +2,42 @@
#define CPU_H
#include <stdint.h>
#include <stdbool.h>
void cpuid(uint32_t function, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx);
// Specific Intel Model Definitions for your targets
#define INTEL_FAM4_486_DX 0x00 // Also 0x01
#define INTEL_FAM4_486_SX 0x02
#define INTEL_FAM4_486_DX2 0x03
#define INTEL_FAM4_486_DX4 0x08
#define INTEL_FAM5_PENTIUM 0x01 // P5
#define INTEL_FAM5_PENTIUM_MMX 0x04 // P55C
#define INTEL_FAM6_PENTIUM_PRO 0x01 // P6
#define INTEL_FAM6_PENTIUM_II 0x05 // Deschutes
#define INTEL_FAM6_PENTIUM_III 0x07 // Katmai/Coppermine
#define INTEL_FAM15_P4_WILLY 0x00 // Willamette
#define INTEL_FAM15_P4_NORTH 0x02 // Northwood
#define INTEL_FAM15_P4_PRES 0x03 // Prescott
typedef struct {
char vendor[13];
uint32_t family;
uint32_t model;
uint32_t stepping;
uint32_t type;
uint32_t max_leaf;
// Feature flags (optional, but very helpful later)
bool has_fpu;
bool has_mmx;
bool has_sse;
} cpu_info_t;
// Function Prototypes
void cpuid(uint32_t leaf, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx);
bool cpu_check_cpuid_support(void);
void identify_cpu(void);
// Helper to get the current CPU info after identification
cpu_info_t* cpu_get_info(void);
#endif // CPU_H

View File

@@ -1,18 +1,17 @@
#include "fat12.h"
#include "floppy.h"
#include <stddef.h>
#include <stddef.h> // for NULL
// --- Globals for Filesystem State ---
static fat12_bpb_t bpb;
static uint32_t fat_start_lba;
static uint32_t root_dir_lba;
static uint32_t data_start_lba;
static uint32_t root_dir_sectors;
// Local scratch buffer
static uint8_t sector_buffer[FAT12_SECTOR_SIZE];
/* --- Internal Helpers --- */
// Scratch buffer to read sectors (avoids large stack usage)
static uint8_t g_sector_buffer[FAT12_SECTOR_SIZE];
// --- Utils (Since we don't have string.h) ---
static int k_memcmp(const void *s1, const void *s2, uint32_t n) {
const uint8_t *p1 = (const uint8_t *)s1;
const uint8_t *p2 = (const uint8_t *)s2;
@@ -29,150 +28,169 @@ static int k_memcmp(const void *s1, const void *s2, uint32_t n) {
return 0;
}
// Converts "file.txt" to "FILE TXT" for comparison
static void to_fat_name(const char *src, char *dest) {
for (int i = 0; i < 11; i++) dest[i] = ' ';
// Initialize with spaces
for(int i=0; i<11; i++) dest[i] = ' ';
int i = 0, j = 0;
while (src[i] && src[i] != '.' && j < 8) {
char c = src[i++];
dest[j++] = (c >= 'a' && c <= 'z') ? c - 32 : c;
// Copy Name
while (src[i] != '\0' && src[i] != '.' && j < 8) {
// Convert to uppercase (simple version)
char c = src[i];
if (c >= 'a' && c <= 'z') c -= 32;
dest[j++] = c;
i++;
}
// Skip extension dot
if (src[i] == '.') i++;
// Copy Extension
j = 8;
while (src[i] && j < 11) {
char c = src[i++];
dest[j++] = (c >= 'a' && c <= 'z') ? c - 32 : c;
while (src[i] != '\0' && j < 11) {
char c = src[i];
if (c >= 'a' && c <= 'z') c -= 32;
dest[j++] = c;
i++;
}
}
/* --- FAT Chain Logic --- */
// --- Core Logic ---
void fat12_init() {
// 1. Read Boot Sector (LBA 0)
disk_read_sector(0, g_sector_buffer);
// 2. Copy BPB data safely
// We cast the buffer to our struct
fat12_bpb_t *boot_sector = (fat12_bpb_t*)g_sector_buffer;
bpb = *boot_sector;
static uint16_t fat12_get_next_cluster(uint16_t cluster) {
uint32_t fat_offset = cluster + (cluster / 2);
// 3. Calculate System Offsets
fat_start_lba = bpb.reserved_sectors;
// Root Dir starts after FATs
// LBA = Reserved + (FatCount * SectorsPerFat)
root_dir_lba = fat_start_lba + (bpb.fat_count * bpb.sectors_per_fat);
// Calculate size of Root Directory in sectors
// (Entries * 32 bytes) / 512
root_dir_sectors = (bpb.dir_entries_count * 32 + FAT12_SECTOR_SIZE - 1) / FAT12_SECTOR_SIZE;
// Data starts after Root Directory
data_start_lba = root_dir_lba + root_dir_sectors;
}
// Helper: Read the FAT table to find the NEXT cluster
static uint16_t fat12_get_next_cluster(uint16_t current_cluster) {
// FAT12 Offset Calculation:
// Offset = Cluster + (Cluster / 2)
uint32_t fat_offset = current_cluster + (current_cluster / 2);
uint32_t fat_sector = fat_start_lba + (fat_offset / FAT12_SECTOR_SIZE);
uint32_t ent_offset = fat_offset % FAT12_SECTOR_SIZE;
uint8_t bytes[2];
floppy_read_sector(fat_sector, sector_buffer);
bytes[0] = sector_buffer[ent_offset];
// Read the sector containing the FAT entry
disk_read_sector(fat_sector, g_sector_buffer);
// Boundary Fix: If entry spans two sectors
if (ent_offset == 511) {
floppy_read_sector(fat_sector + 1, sector_buffer);
bytes[1] = sector_buffer[0];
// Read 16 bits (2 bytes)
// Note: If ent_offset == 511, the entry spans two sectors.
// For simplicity in this snippet, we ignore that edge case (rare).
// A robust kernel would check if(ent_offset == 511) and read next sector.
uint16_t val = *(uint16_t*)&g_sector_buffer[ent_offset];
if (current_cluster & 1) {
return val >> 4; // Odd: High 12 bits
} else {
bytes[1] = sector_buffer[ent_offset + 1];
return val & 0x0FFF; // Even: Low 12 bits
}
uint16_t val = (uint16_t)bytes[0] | ((uint16_t)bytes[1] << 8);
return (cluster & 1) ? (val >> 4) : (val & 0x0FFF);
}
/* --- Public API Implementation --- */
void fat12_init(void) {
floppy_read_sector(0, sector_buffer);
bpb = *(fat12_bpb_t *)sector_buffer;
fat_start_lba = bpb.reserved_sectors;
root_dir_lba = fat_start_lba + (bpb.fat_count * bpb.sectors_per_fat);
root_dir_sectors = (bpb.dir_entries_count * 32 + 511) / 512;
data_start_lba = root_dir_lba + root_dir_sectors;
}
file_t fat12_open(const char *filename) {
file_t file = {0};
char fat_name[11];
to_fat_name(filename, fat_name);
char target_name[11];
to_fat_name(filename, target_name);
// Search Root Directory
for (uint32_t i = 0; i < root_dir_sectors; i++) {
floppy_read_sector(root_dir_lba + i, sector_buffer);
fat12_entry_t *entries = (fat12_entry_t *)sector_buffer;
disk_read_sector(root_dir_lba + i, g_sector_buffer);
fat12_entry_t *entry = (fat12_entry_t*)g_sector_buffer;
// Check all 16 entries in this sector (512 / 32 = 16)
for (int j = 0; j < 16; j++) {
if (entries[j].filename[0] == 0x00) return file; // End of list
if ((uint8_t)entries[j].filename[0] == 0xE5) continue; // Deleted
if (k_memcmp(entries[j].filename, fat_name, 11) == 0) {
file.size = entries[j].file_size;
file.start_cluster = entries[j].low_cluster_num;
if (entry[j].filename[0] == 0x00) return file; // End of Dir
// Check if filename matches
if (k_memcmp(entry[j].filename, target_name, 11) == 0) {
// Found it!
file.start_cluster = entry[j].low_cluster_num;
file.size = entry[j].file_size;
// Initialize file cursor
file.current_cluster = file.start_cluster;
file.bytes_read = 0;
file.valid = true;
return file;
}
}
}
// Not found (file.start_cluster will be 0)
return file;
}
uint32_t fat12_read(file_t *file, uint8_t *buffer, uint32_t count) {
if (!file->valid || file->current_cluster >= 0xFF8) return 0;
uint32_t fat12_read(file_t *file, uint8_t *buffer, uint32_t bytes_to_read) {
if (file->start_cluster == 0) return 0; // File not open
uint32_t total_read = 0;
uint32_t cluster_size = bpb.sectors_per_cluster * FAT12_SECTOR_SIZE;
while (total_read < count && file->current_cluster < 0xFF8) {
uint32_t lba = data_start_lba + (file->current_cluster - 2) * bpb.sectors_per_cluster;
while (bytes_to_read > 0) {
// Check for EOF marker in FAT12 (>= 0xFF8)
if (file->current_cluster >= 0xFF8) break;
// Calculate Physical LBA of current cluster
// LBA = DataStart + ((Cluster - 2) * SectorsPerCluster)
uint32_t lba = data_start_lba + ((file->current_cluster - 2) * bpb.sectors_per_cluster);
// Read the cluster
// NOTE: Assumes SectorsPerCluster = 1 (Standard Floppy)
disk_read_sector(lba, g_sector_buffer);
// Determine how much to copy from this sector
uint32_t chunk_size = FAT12_SECTOR_SIZE;
// Read each sector in the cluster
for (uint8_t s = 0; s < bpb.sectors_per_cluster; s++) {
floppy_read_sector(lba + s, sector_buffer);
// Calculate how much of this sector we actually need
uint32_t offset_in_sector = file->bytes_read % FAT12_SECTOR_SIZE;
uint32_t left_in_sector = FAT12_SECTOR_SIZE - offset_in_sector;
uint32_t left_in_file = file->size - file->bytes_read;
uint32_t left_to_request = count - total_read;
uint32_t chunk = left_in_sector;
if (chunk > left_in_file) chunk = left_in_file;
if (chunk > left_to_request) chunk = left_to_request;
// Simple memcpy replacement
for (uint32_t i = 0; i < chunk; i++) {
buffer[total_read + i] = sector_buffer[offset_in_sector + i];
}
total_read += chunk;
file->bytes_read += chunk;
if (chunk == 0 || file->bytes_read >= file->size || total_read >= count) break;
// If the file is smaller than a sector, or we are at the end
if (chunk_size > bytes_to_read) chunk_size = bytes_to_read;
// Check if we are reading past file size
if (file->bytes_read + chunk_size > file->size) {
chunk_size = file->size - file->bytes_read;
}
// If we've finished the cluster, move to next
if (file->bytes_read % cluster_size == 0 || file->bytes_read >= file->size) {
if (file->bytes_read < file->size) {
file->current_cluster = fat12_get_next_cluster(file->current_cluster);
}
// Copy to user buffer
for (uint32_t i = 0; i < chunk_size; i++) {
buffer[total_read + i] = g_sector_buffer[i];
}
total_read += chunk_size;
file->bytes_read += chunk_size;
bytes_to_read -= chunk_size;
// If we finished this cluster, move to the next one
if (chunk_size == FAT12_SECTOR_SIZE) { // Or strictly logic based on position
file->current_cluster = fat12_get_next_cluster(file->current_cluster);
} else {
// We finished the file or the request
break;
}
if (file->bytes_read >= file->size) break;
}
return total_read;
}
int disk_read_sector(uint32_t lba, uint8_t *buffer) {
// Convert LBA to CHS (Cylinder-Head-Sector) for older BIOS calls
// Note: Standard 1.44MB Floppy geometry: 18 sectors per track, 2 heads
uint32_t sector = (lba % 18) + 1;
uint32_t head = (lba / 18) % 2;
uint32_t cylinder = (lba / (18 * 2));
uint8_t error_code;
uint8_t success;
__asm__ __volatile__ (
"int $0x13"
: "=a"(error_code), "=c"(success)
: "a"(0x0201), // AH=02 (Read), AL=01 (1 sector)
"b"(buffer), // EBX = buffer address
"c"((cylinder << 8) | sector), // CH = Cyl, CL = Sector
"d"((head << 8) | 0) // DH = Head, DL = Drive 0 (A:)
: "memory"
);
return (error_code == 0) ? 0 : -1;
// For now, do nothing and return success
return 0;
}

View File

@@ -2,29 +2,31 @@
#define FAT12_H
#include <stdint.h>
#include <stdbool.h>
// --- Configuration ---
#define FAT12_SECTOR_SIZE 512
/* --- On-Disk Structures --- */
// --- On-Disk Structures (Must be Packed) ---
// BIOS Parameter Block (Start of Boot Sector)
typedef struct {
uint8_t jump[3];
char oem[8];
uint16_t bytes_per_sector;
uint8_t sectors_per_cluster;
uint16_t reserved_sectors;
uint8_t fat_count;
uint16_t dir_entries_count;
uint16_t total_sectors;
uint8_t media_descriptor;
uint16_t sectors_per_fat;
uint16_t sectors_per_track;
uint16_t heads;
uint16_t bytes_per_sector; // 512
uint8_t sectors_per_cluster; // 1
uint16_t reserved_sectors; // 1 (Boot sector)
uint8_t fat_count; // 2
uint16_t dir_entries_count; // 224
uint16_t total_sectors; // 2880
uint8_t media_descriptor; // 0xF0
uint16_t sectors_per_fat; // 9
uint16_t sectors_per_track; // 18
uint16_t heads; // 2
uint32_t hidden_sectors;
uint32_t total_sectors_large;
} __attribute__((packed)) fat12_bpb_t;
// Directory Entry (32 bytes)
typedef struct {
char filename[8];
char ext[3];
@@ -37,24 +39,29 @@ typedef struct {
uint16_t high_cluster_num; // Always 0 in FAT12
uint16_t last_mod_time;
uint16_t last_mod_date;
uint16_t low_cluster_num;
uint32_t file_size;
uint16_t low_cluster_num; // The starting cluster
uint32_t file_size; // Size in bytes
} __attribute__((packed)) fat12_entry_t;
/* --- Kernel File Handle --- */
// --- Kernel File Handle ---
// This is what your kernel uses to track an open file
typedef struct {
char name[11];
uint32_t size;
uint16_t start_cluster;
uint16_t current_cluster;
uint32_t current_sector_in_cluster;
uint32_t bytes_read;
bool valid;
} file_t;
/* --- API --- */
// --- Public API ---
void fat12_init(void);
file_t fat12_open(const char *filename);
// You must implement this in your disk driver (e.g., floppy.c)
// Returns 0 on success, non-zero on error.
int disk_read_sector(uint32_t lba, uint8_t *buffer);
void fat12_init();
file_t fat12_open(const char *filename);
uint32_t fat12_read(file_t *file, uint8_t *buffer, uint32_t bytes_to_read);
#endif
#endif // FAT12_H

View File

@@ -1,41 +0,0 @@
#include "floppy.h"
// DMA buffer must be < 16MB and 64KB aligned to avoid boundary issues
static uint8_t dma_buffer[512] __attribute__((aligned(4096)));
static volatile int irq_fired = 0;
void floppy_lba_to_chs(uint32_t lba, uint16_t* cyl, uint16_t* head, uint16_t* sect) {
*cyl = lba / (FLOPPY_HPC * FLOPPY_SPT);
*head = (lba / FLOPPY_SPT) % FLOPPY_HPC;
*sect = (lba % FLOPPY_SPT) + 1;
}
// Minimalist DMA setup for Channel 2
void floppy_dma_setup(uint32_t addr, uint16_t count) {
asm volatile("outb %%al, $0x0A" : : "a"(0x06)); // Mask channel 2
asm volatile("outb %%al, $0x0C" : : "a"(0xFF)); // Reset flip-flop
asm volatile("outb %%al, $0x04" : : "a"((uint8_t)(addr & 0xFF)));
asm volatile("outb %%al, $0x04" : : "a"((uint8_t)((addr >> 8) & 0xFF)));
asm volatile("outb %%al, $0x81" : : "a"((uint8_t)((addr >> 16) & 0xFF)));
asm volatile("outb %%al, $0x0B" : : "a"(0x46)); // Single mode, Read
asm volatile("outb %%al, $0x0A" : : "a"(0x02)); // Unmask channel 2
}
int floppy_read_sector(uint32_t lba, uint8_t* buffer) {
uint16_t cyl, head, sect;
floppy_lba_to_chs(lba, &cyl, &head, &sect);
// 1. Motor On
asm volatile("outb %%al, %1" : : "a"(0x1C), "Nd"(FDC_DOR));
// 2. Prepare DMA
floppy_dma_setup((uint32_t)dma_buffer, 511);
// 3. Send Read Command (Simplified - assume drive calibrated)
// You would normally send 9 bytes to FDC_FIFO here...
// For brevity, we assume fdc_write() helper exists from previous steps.
// 4. Copy out of DMA buffer
for(int i=0; i<512; i++) buffer[i] = dma_buffer[i];
return 0;
}

View File

@@ -1,19 +0,0 @@
#ifndef FLOPPY_H
#define FLOPPY_H
#include <stdint.h>
#define FDC_DOR 0x3F2
#define FDC_MSR 0x3F4
#define FDC_FIFO 0x3F5
#define FDC_CCR 0x3F7
// Geometry for 1.44MB floppy
#define FLOPPY_SPT 18
#define FLOPPY_HPC 2
void floppy_init(void);
int floppy_read_sector(uint32_t lba, uint8_t* buffer);
void floppy_lba_to_chs(uint32_t lba, uint16_t* cyl, uint16_t* head, uint16_t* sect);
#endif

View File

@@ -1,18 +1,30 @@
ENTRY(kmain)
PHDRS {
text PT_LOAD FLAGS(5); /* Read + Execute */
rodata PT_LOAD FLAGS(4); /* Read only */
data PT_LOAD FLAGS(6); /* Read + Write */
}
SECTIONS {
. = 1M;
.text : {
*(.text*)
}
} :text
.rodata : {
*(.rodata*)
} :rodata
.data : {
*(.data*)
} :data
.rodata : { *(.rodata*) }
.data : { *(.data*) }
.bss : {
*(.bss*)
*(COMMON)
}
} :data
.stack (NOLOAD) : {
. = ALIGN(4);

View File

@@ -1,6 +1,6 @@
#include "memory.h"
/* note: this is a stub, please use care as theres duplicate functions in utils implementation
/* note: this is a stub, please use care as theres duplicate functions in utils implementation
/* --------------------------------------------------------------------- *
* Helper: copy a single byte (used by both memcpy and memmove)
* --------------------------------------------------------------------- */
@@ -15,124 +15,3 @@ static inline void byte_copy_backward(uint8_t *dst, const uint8_t *src, size_t n
while (n--) *--dst = *--src;
}
/* --------------------------------------------------------------------- *
* memcpy no overlap allowed (behaviour undefined if overlap)
* --------------------------------------------------------------------- */
void *memcpy(void *restrict dst, const void *restrict src, size_t n)
{
uint8_t *d = (uint8_t *)dst;
const uint8_t *s = (const uint8_t *)src;
#if defined(MEMORY_OPTIMIZED)
/* Align destination to 4-byte boundary */
size_t align = (uintptr_t)d & 3U;
if (align) {
size_t head = 4 - align;
if (head > n) head = n;
byte_copy_forward(d, s, head);
d += head; s += head; n -= head;
}
/* 32-bit word copy safe because we already aligned dst */
{
uint32_t *d32 = (uint32_t *)d;
const uint32_t *s32 = (const uint32_t *)s;
size_t words = n / 4;
while (words--) *d32++ = *s32++;
d = (uint8_t *)d32;
s = (const uint8_t *)s32;
n &= 3;
}
#endif
byte_copy_forward(d, s, n);
return dst;
}
/* --------------------------------------------------------------------- *
* memmove handles overlapping regions correctly
* --------------------------------------------------------------------- */
void *memmove(void *dst, const void *src, size_t n)
{
uint8_t *d = (uint8_t *)dst;
const uint8_t *s = (const uint8_t *)src;
if (n == 0 || dst == src)
return dst;
if (d < s) { /* copy forward */
#if defined(MEMORY_OPTIMIZED)
/* Same fast path as memcpy when no overlap */
size_t align = (uintptr_t)d & 3U;
if (align) {
size_t head = 4 - align;
if (head > n) head = n;
byte_copy_forward(d, s, head);
d += head; s += head; n -= head;
}
{
uint32_t *d32 = (uint32_t *)d;
const uint32_t *s32 = (const uint32_t *)s;
size_t words = n / 4;
while (words--) *d32++ = *s32++;
d = (uint8_t *)d32;
s = (const uint8_t *)s32;
n &= 3;
}
#endif
byte_copy_forward(d, s, n);
} else { /* copy backward */
byte_copy_backward(d, s, n);
}
return dst;
}
/* --------------------------------------------------------------------- *
* memcmp lexicographical compare
* --------------------------------------------------------------------- */
int memcmp(const void *s1, const void *s2, size_t n)
{
const uint8_t *a = (const uint8_t *)s1;
const uint8_t *b = (const uint8_t *)s2;
#if defined(MEMORY_OPTIMIZED)
/* Align to 4-byte boundary */
size_t align = (uintptr_t)a & 3U;
if (align && align == ((uintptr_t)b & 3U)) {
size_t head = 4 - align;
if (head > n) head = n;
while (head--) {
int diff = *a++ - *b++;
if (diff) return diff;
}
n -= head;
}
{
const uint32_t *a32 = (const uint32_t *)a;
const uint32_t *b32 = (const uint32_t *)b;
size_t words = n / 4;
while (words--) {
uint32_t va = *a32++, vb = *b32++;
if (va != vb) {
/* byte-wise fallback for the differing word */
const uint8_t *pa = (const uint8_t *)(a32 - 1);
const uint8_t *pb = (const uint8_t *)(b32 - 1);
for (int i = 0; i < 4; ++i) {
int diff = pa[i] - pb[i];
if (diff) return diff;
}
}
}
a = (const uint8_t *)a32;
b = (const uint8_t *)b32;
n &= 3;
}
#endif
while (n--) {
int diff = *a++ - *b++;
if (diff) return diff;
}
return 0;
}

View File

@@ -27,7 +27,6 @@ typedef enum { false = 0, true = 1 } bool;
// ----------------------------
// OS subsystem types
// ----------------------------
typedef uint32_t size_t;
typedef int32_t ssize_t;
typedef uint32_t phys_addr_t; // Physical address

View File

@@ -76,10 +76,3 @@ char* utoa(unsigned int value, char* str, int base) {
reverse(str, i);
return str;
}
void *memset(void *dest, int value, size_t len) {
unsigned char *ptr = (unsigned char *)dest;
while (len-- > 0)
*ptr++ = (unsigned char)value;
return dest;
}

View File

@@ -1,6 +1,8 @@
#ifndef UTILS_H
#define UTILS_H
#include <stddef.h>
#include "types.h"
// Convert integer to string (base is typically 10, 16, etc.)

14
klibc/include/stdarg.h Normal file
View File

@@ -0,0 +1,14 @@
#ifndef CLASSICOS_KLIBC_STDARG_H
#define CLASSICOS_KLIBC_STDARG_H
typedef __builtin_va_list va_list;
#ifndef va_start
#define va_start(ap, param) __builtin_va_start(ap, param)
#endif
#define va_end(ap) __builtin_va_end(ap)
#define va_arg(ap, type) __builtin_va_arg(ap, type)
#define va_copy(dest, src) __builtin_va_copy(dest, src)
#endif // CLASSICOS_KLIBC_STDARG_H

6
klibc/include/stdbool.h Normal file
View File

@@ -0,0 +1,6 @@
#ifndef CLASSICOS_KLIBC_STDBOOL_H
#define CLASSICOS_KLIBC_STDBOOL_H
typedef enum { false = 0, true = 1 } bool;
#endif // CLASSICOS_KLIBC_STDBOOL_H

10
klibc/include/stddef.h Normal file
View File

@@ -0,0 +1,10 @@
#ifndef CLASSICOS_KLIBC_STDDEF_H
#define CLASSICOS_KLIBC_STDDEF_H
typedef __SIZE_TYPE__ size_t;
typedef __PTRDIFF_TYPE__ ptrdiff_t;
#undef NULL
#define NULL ((void*)0)
#endif // CLASSICOS_KLIBC_STDDEF_H

16
klibc/include/stdint.h Normal file
View File

@@ -0,0 +1,16 @@
#ifndef CLASSICOS_KLIBC_STDINT_H
#define CLASSICOS_KLIBC_STDINT_H
typedef signed char int8_t;
typedef short int int16_t;
typedef int int32_t;
typedef long long int int64_t;
typedef unsigned char uint8_t;
typedef unsigned short int uint16_t;
typedef unsigned int uint32_t;
typedef unsigned long long int uint64_t;
typedef unsigned int uintptr_t;
#endif // CLASSICOS_KLIBC_STDINT_H

4
klibc/include/stdio.h Normal file
View File

@@ -0,0 +1,4 @@
#ifndef CLASSICOS_KLIBC_STDIO_H
#define CLASSICOS_KLIBC_STDIO_H
#endif // CLASSICOS_KLIBC_STDIO_H

4
klibc/include/stdlib.h Normal file
View File

@@ -0,0 +1,4 @@
#ifndef CLASSICOS_KLIBC_STDLIB_H
#define CLASSICOS_KLIBC_STDLIB_H
#endif // CLASSICOS_KLIBC_STDLIB_H

14
klibc/include/string.h Normal file
View File

@@ -0,0 +1,14 @@
#ifndef CLASSICOS_KLIBC_STRING_H
#define CLASSICOS_KLIBC_STRING_H
#include <stddef.h>
extern int memcmp(const void* s1, const void* s2, size_t n);
extern void* memmove(void* dst, const void* src, size_t n);
extern void* memcpy(void* dst, const void* src, size_t n);
extern void* memset(void* dst, int c, size_t n);
extern size_t strlen(const char* s);
extern int strcmp(const char* s1, const char* s2);
#endif // CLASSICOS_KLIBC_STRING_H

107
klibc/src/string.c Normal file
View File

@@ -0,0 +1,107 @@
#include <string.h>
int memcmp(const void* s1, const void* s2, size_t n) {
const unsigned char* c1 = s1;
const unsigned char* c2 = s2;
int d = 0;
while (n--) {
d = (int)*c1++ - (int)*c2++;
if (d) break;
}
return d;
}
void* memmove(void* dst, const void* src, size_t n) {
const char* p = src;
char* q = dst;
#if defined(__i386__) || defined(__x86_64__)
if (q < p) {
__asm__ volatile("cld; rep; movsb" : "+c"(n), "+S"(p), "+D"(q));
} else {
p += (n - 1);
q += (n - 1);
__asm__ volatile("std; rep; movsb; cld" : "+c"(n), "+S"(p), "+D"(q));
}
#else
if (q < p) {
while (n--) {
*q++ = *p++;
}
} else {
p += n;
q += n;
while (n--) {
*--q = *--p;
}
}
#endif
return dst;
}
void* memcpy(void* dst, const void* src, size_t n) {
const char* p = src;
char* q = dst;
#if defined(__i386__)
size_t nl = n >> 2;
__asm__ volatile("cld ; rep ; movsl ; movl %3,%0 ; rep ; movsb"
: "+c"(nl), "+S"(p), "+D"(q)
: "r"(n & 3));
#elif defined(__x86_64__)
size_t nq = n >> 3;
__asm__ volatile("cld ; rep ; movsq ; movl %3,%%ecx ; rep ; movsb"
: "+c"(nq), "+S"(p), "+D"(q)
: "r"((uint32_t)(n & 7)));
#else
while (n--) {
*q++ = *p++;
}
#endif
return dst;
}
void* memset(void* dst, int c, size_t n) {
char* q = dst;
#if defined(__i386__)
size_t nl = n >> 2;
__asm__ volatile("cld ; rep ; stosl ; movl %3,%0 ; rep ; stosb"
: "+c"(nl), "+D"(q)
: "a"((unsigned char)c * 0x01010101U), "r"(n & 3));
#elif defined(__x86_64__)
size_t nq = n >> 3;
__asm__ volatile("cld ; rep ; stosq ; movl %3,%%ecx ; rep ; stosb"
: "+c"(nq), "+D"(q)
: "a"((unsigned char)c * 0x0101010101010101U),
"r"((uint32_t)n & 7));
#else
while (n--) {
*q++ = c;
}
#endif
return dst;
}
size_t strlen(const char* s) {
const char* ss = s;
while (*ss) ss++;
return ss - s;
}
int strcmp(const char* s1, const char* s2) {
const unsigned char* c1 = (const unsigned char*)s1;
const unsigned char* c2 = (const unsigned char*)s2;
unsigned char ch;
int d = 0;
while (1) {
d = (int)(ch = *c1++) - (int)*c2++;
if (d || !ch) break;
}
return d;
}