5 Commits

Author SHA1 Message Date
06472626ee Refactor k_memcmp and implement disk_read_sector
Refactor memory comparison function and add disk read sector function.
2026-01-08 20:53:22 -08:00
be73165069 Update fat12.c
This fixes a offset issue where 510-512 might not be read correctly and might error.
2025-12-19 15:49:59 -08:00
f9980c2e68 Update fat12.h 2025-12-19 15:43:24 -08:00
0a396c58c2 Create floppy.c
floppy driver implementation that works with the fat12 filesystem. This works with the fdc to do floppy things
2025-12-19 15:33:25 -08:00
8abc33c70b Create floppy.h
floppy driver that works with the fat12 implementation
2025-12-19 15:29:08 -08:00
21 changed files with 344 additions and 381 deletions

2
.gitignore vendored
View File

@@ -1,5 +1,3 @@
.build.env .build.env
build build
cross cross
.cache/
compile_commands.json

View File

@@ -6,7 +6,6 @@ QEMU= qemu-system-i386
OBJCOPY = i386-elf-objcopy OBJCOPY = i386-elf-objcopy
BUILD_DIR = build BUILD_DIR = build
CROSS_DIR = cross
DISK_IMG = $(BUILD_DIR)/disk.img DISK_IMG = $(BUILD_DIR)/disk.img
STAGE2_SIZE = 2048 STAGE2_SIZE = 2048
@@ -15,9 +14,6 @@ KERNEL_ASM_SRC = $(wildcard kernel/*.asm)
KERNEL_OBJ = $(patsubst kernel/%.c, $(BUILD_DIR)/%.o, $(KERNEL_C_SRC)) KERNEL_OBJ = $(patsubst kernel/%.c, $(BUILD_DIR)/%.o, $(KERNEL_C_SRC))
KERNEL_OBJ += $(patsubst kernel/%.asm, $(BUILD_DIR)/asm_%.o, $(KERNEL_ASM_SRC)) KERNEL_OBJ += $(patsubst kernel/%.asm, $(BUILD_DIR)/asm_%.o, $(KERNEL_ASM_SRC))
KLIBC_SRC = $(wildcard klibc/src/*.c)
KLIBC_OBJ = $(patsubst klibc/src/%.c, $(BUILD_DIR)/klibc/%.o, $(KLIBC_SRC))
all: $(DISK_IMG) all: $(DISK_IMG)
.PHONY: stage1 stage2 kernel run gdb clean .PHONY: stage1 stage2 kernel run gdb clean
@@ -30,7 +26,7 @@ stage1: $(BUILD_DIR)
# Alternatively, convey the final stage2 size through other means to stage1. # Alternatively, convey the final stage2 size through other means to stage1.
stage2: $(BUILD_DIR) stage2: $(BUILD_DIR)
$(AS) $(ASFLAGS) -o $(BUILD_DIR)/stage2.o bootloader/stage2.asm $(AS) $(ASFLAGS) -o $(BUILD_DIR)/stage2.o bootloader/stage2.asm
$(CC) -std=c11 -ffreestanding -nostdlib -nostdinc -fno-stack-protector -m32 -Iklibc/include -g -c -o $(BUILD_DIR)/stage2_load.o bootloader/stage2_load.c $(CC) -std=c11 -ffreestanding -nostdlib -fno-stack-protector -m32 -g -c -o $(BUILD_DIR)/stage2_load.o bootloader/stage2_load.c
$(LD) -Tbootloader/stage2.ld -melf_i386 -o $(BUILD_DIR)/$@.elf $(BUILD_DIR)/stage2.o $(BUILD_DIR)/stage2_load.o $(LD) -Tbootloader/stage2.ld -melf_i386 -o $(BUILD_DIR)/$@.elf $(BUILD_DIR)/stage2.o $(BUILD_DIR)/stage2_load.o
$(OBJCOPY) -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin $(OBJCOPY) -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin
truncate -s $(STAGE2_SIZE) $(BUILD_DIR)/$@.bin truncate -s $(STAGE2_SIZE) $(BUILD_DIR)/$@.bin
@@ -39,13 +35,10 @@ $(BUILD_DIR)/asm_%.o: kernel/%.asm
$(AS) $(ASFLAGS) -o $@ $< $(AS) $(ASFLAGS) -o $@ $<
$(BUILD_DIR)/%.o: kernel/%.c $(BUILD_DIR)/%.o: kernel/%.c
$(CC) -std=c11 -ffreestanding -nostdlib -nostdinc -fno-stack-protector -m32 -Iklibc/include -g -c -o $@ $< $(CC) -std=c11 -ffreestanding -nostdlib -fno-stack-protector -m32 -g -c -o $@ $<
$(BUILD_DIR)/klibc/%.o: klibc/src/%.c kernel: $(KERNEL_OBJ) | $(BUILD_DIR)
$(CC) -std=c11 -ffreestanding -nostdlib -nostdinc -fno-stack-protector -m32 -Iklibc/include -g -c -o $@ $< $(LD) -melf_i386 -Tkernel/linker.ld -o $(BUILD_DIR)/kernel.elf $(KERNEL_OBJ)
kernel: $(KERNEL_OBJ) | $(BUILD_DIR) $(KLIBC_OBJ)
$(LD) -melf_i386 -Tkernel/linker.ld -o $(BUILD_DIR)/kernel.elf $(KERNEL_OBJ) $(KLIBC_OBJ)
$(DISK_IMG): stage1 stage2 kernel $(DISK_IMG): stage1 stage2 kernel
dd if=$(BUILD_DIR)/stage1.bin of=$@ dd if=$(BUILD_DIR)/stage1.bin of=$@
@@ -55,7 +48,6 @@ $(DISK_IMG): stage1 stage2 kernel
$(BUILD_DIR): $(BUILD_DIR):
mkdir -p $@ mkdir -p $@
mkdir -p $(BUILD_DIR)/klibc
run: run:
qemu-system-i386 -s -S $(DISK_IMG) qemu-system-i386 -s -S $(DISK_IMG)
@@ -65,9 +57,4 @@ gdb:
clean: clean:
rm -rf $(BUILD_DIR) rm -rf $(BUILD_DIR)
clean-cross:
rm -rf $(CROSS_DIR) rm -rf $(CROSS_DIR)
rm -rf .build.env
clean-all: clean clean-cross

View File

@@ -40,13 +40,6 @@ ata_lba_read:
push edx push edx
push edi push edi
; Wait BSY=0 before proceeding to write the regs
.wait_rdy:
mov edx, 0x1F7
in al, dx
test al, 0x80
jnz .wait_rdy
mov eax, [ebp+8] ; arg #1 = LBA mov eax, [ebp+8] ; arg #1 = LBA
mov cl, [ebp+12] ; arg #2 = # of sectors mov cl, [ebp+12] ; arg #2 = # of sectors
mov edi, [ebp+16] ; arg #3 = buffer address mov edi, [ebp+16] ; arg #3 = buffer address
@@ -81,23 +74,21 @@ ata_lba_read:
mov al, 0x20 ; Read with retry. mov al, 0x20 ; Read with retry.
out dx, al out dx, al
mov bl, cl ; Save # of sectors in BL mov bl, cl ; Save # of sectors in BL
.wait_rdy2: .wait_drq:
mov edx, 0x1F7 mov edx, 0x1F7
.do_wait_rdy2: .do_wait_drq:
in al, dx in al, dx
test al, 0x80 ; BSY? test al, 8 ; the sector buffer requires servicing.
jnz .do_wait_rdy2 jz .do_wait_drq ; keep polling until the sector buffer is ready.
test al, 0x8 ; DRQ?
jz .do_wait_rdy2
mov edx, 0x1F0 ; Data port, in and out mov edx, 0x1F0 ; Data port, in and out
mov ecx, 256 mov ecx, 256
rep insw ; in to [RDI] rep insw ; in to [RDI]
dec bl ; are we... dec bl ; are we...
jnz .wait_rdy2 ; ...done? jnz .wait_drq ; ...done?
pop edi pop edi
pop edx pop edx

View File

@@ -1,4 +1,4 @@
global ctx_switch .global ctx_switch
; void ctx_switch(uint32_t **old_sp_ptr, uint32_t *new_sp); ; void ctx_switch(uint32_t **old_sp_ptr, uint32_t *new_sp);
; Arguments on stack (cdecl convention): ; Arguments on stack (cdecl convention):

View File

@@ -1,184 +1,178 @@
#include "fat12.h" #include "fat12.h"
#include <stddef.h> // for NULL #include "floppy.h"
#include <stddef.h>
// --- Globals for Filesystem State ---
static fat12_bpb_t bpb; static fat12_bpb_t bpb;
static uint32_t fat_start_lba; static uint32_t fat_start_lba;
static uint32_t root_dir_lba; static uint32_t root_dir_lba;
static uint32_t data_start_lba; static uint32_t data_start_lba;
static uint32_t root_dir_sectors; static uint32_t root_dir_sectors;
// Scratch buffer to read sectors (avoids large stack usage) // Local scratch buffer
static uint8_t g_sector_buffer[FAT12_SECTOR_SIZE]; static uint8_t sector_buffer[FAT12_SECTOR_SIZE];
/* --- Internal Helpers --- */
// --- Utils (Since we don't have string.h) ---
static int k_memcmp(const void *s1, const void *s2, uint32_t n) { static int k_memcmp(const void *s1, const void *s2, uint32_t n) {
const uint8_t *p1 = (const uint8_t *)s1; const uint8_t *p1 = (const uint8_t *)s1;
const uint8_t *p2 = (const uint8_t *)s2; const uint8_t *p2 = (const uint8_t *)s2;
for (uint32_t i = 0; i < n; i++) { for (uint32_t i = 0; i < n; i++) {
if (p1[i] != p2[i]) return p1[i] - p2[i]; if (p1[i] != p2[i]) {
// Correct way to return the difference:
// If p1[i] > p2[i], returns positive.
// If p1[i] < p2[i], returns negative.
return (int)p1[i] - (int)p2[i];
}
} }
return 0; return 0;
} }
// Converts "file.txt" to "FILE TXT" for comparison
static void to_fat_name(const char *src, char *dest) { static void to_fat_name(const char *src, char *dest) {
// Initialize with spaces for (int i = 0; i < 11; i++) dest[i] = ' ';
for(int i=0; i<11; i++) dest[i] = ' ';
int i = 0, j = 0; int i = 0, j = 0;
// Copy Name while (src[i] && src[i] != '.' && j < 8) {
while (src[i] != '\0' && src[i] != '.' && j < 8) { char c = src[i++];
// Convert to uppercase (simple version) dest[j++] = (c >= 'a' && c <= 'z') ? c - 32 : c;
char c = src[i];
if (c >= 'a' && c <= 'z') c -= 32;
dest[j++] = c;
i++;
} }
// Skip extension dot
if (src[i] == '.') i++; if (src[i] == '.') i++;
// Copy Extension
j = 8; j = 8;
while (src[i] != '\0' && j < 11) { while (src[i] && j < 11) {
char c = src[i]; char c = src[i++];
if (c >= 'a' && c <= 'z') c -= 32; dest[j++] = (c >= 'a' && c <= 'z') ? c - 32 : c;
dest[j++] = c;
i++;
} }
} }
// --- Core Logic --- /* --- FAT Chain Logic --- */
void fat12_init() {
// 1. Read Boot Sector (LBA 0)
disk_read_sector(0, g_sector_buffer);
// 2. Copy BPB data safely
// We cast the buffer to our struct
fat12_bpb_t *boot_sector = (fat12_bpb_t*)g_sector_buffer;
bpb = *boot_sector;
// 3. Calculate System Offsets
fat_start_lba = bpb.reserved_sectors;
// Root Dir starts after FATs
// LBA = Reserved + (FatCount * SectorsPerFat)
root_dir_lba = fat_start_lba + (bpb.fat_count * bpb.sectors_per_fat);
// Calculate size of Root Directory in sectors
// (Entries * 32 bytes) / 512
root_dir_sectors = (bpb.dir_entries_count * 32 + FAT12_SECTOR_SIZE - 1) / FAT12_SECTOR_SIZE;
// Data starts after Root Directory
data_start_lba = root_dir_lba + root_dir_sectors;
}
// Helper: Read the FAT table to find the NEXT cluster
static uint16_t fat12_get_next_cluster(uint16_t current_cluster) {
// FAT12 Offset Calculation:
// Offset = Cluster + (Cluster / 2)
uint32_t fat_offset = current_cluster + (current_cluster / 2);
static uint16_t fat12_get_next_cluster(uint16_t cluster) {
uint32_t fat_offset = cluster + (cluster / 2);
uint32_t fat_sector = fat_start_lba + (fat_offset / FAT12_SECTOR_SIZE); uint32_t fat_sector = fat_start_lba + (fat_offset / FAT12_SECTOR_SIZE);
uint32_t ent_offset = fat_offset % FAT12_SECTOR_SIZE; uint32_t ent_offset = fat_offset % FAT12_SECTOR_SIZE;
// Read the sector containing the FAT entry uint8_t bytes[2];
disk_read_sector(fat_sector, g_sector_buffer); floppy_read_sector(fat_sector, sector_buffer);
bytes[0] = sector_buffer[ent_offset];
// Read 16 bits (2 bytes) // Boundary Fix: If entry spans two sectors
// Note: If ent_offset == 511, the entry spans two sectors. if (ent_offset == 511) {
// For simplicity in this snippet, we ignore that edge case (rare). floppy_read_sector(fat_sector + 1, sector_buffer);
// A robust kernel would check if(ent_offset == 511) and read next sector. bytes[1] = sector_buffer[0];
uint16_t val = *(uint16_t*)&g_sector_buffer[ent_offset];
if (current_cluster & 1) {
return val >> 4; // Odd: High 12 bits
} else { } else {
return val & 0x0FFF; // Even: Low 12 bits bytes[1] = sector_buffer[ent_offset + 1];
} }
uint16_t val = (uint16_t)bytes[0] | ((uint16_t)bytes[1] << 8);
return (cluster & 1) ? (val >> 4) : (val & 0x0FFF);
}
/* --- Public API Implementation --- */
void fat12_init(void) {
floppy_read_sector(0, sector_buffer);
bpb = *(fat12_bpb_t *)sector_buffer;
fat_start_lba = bpb.reserved_sectors;
root_dir_lba = fat_start_lba + (bpb.fat_count * bpb.sectors_per_fat);
root_dir_sectors = (bpb.dir_entries_count * 32 + 511) / 512;
data_start_lba = root_dir_lba + root_dir_sectors;
} }
file_t fat12_open(const char *filename) { file_t fat12_open(const char *filename) {
file_t file = {0}; file_t file = {0};
char target_name[11]; char fat_name[11];
to_fat_name(filename, target_name); to_fat_name(filename, fat_name);
// Search Root Directory
for (uint32_t i = 0; i < root_dir_sectors; i++) { for (uint32_t i = 0; i < root_dir_sectors; i++) {
disk_read_sector(root_dir_lba + i, g_sector_buffer); floppy_read_sector(root_dir_lba + i, sector_buffer);
fat12_entry_t *entries = (fat12_entry_t *)sector_buffer;
fat12_entry_t *entry = (fat12_entry_t*)g_sector_buffer;
// Check all 16 entries in this sector (512 / 32 = 16)
for (int j = 0; j < 16; j++) { for (int j = 0; j < 16; j++) {
if (entry[j].filename[0] == 0x00) return file; // End of Dir if (entries[j].filename[0] == 0x00) return file; // End of list
if ((uint8_t)entries[j].filename[0] == 0xE5) continue; // Deleted
// Check if filename matches if (k_memcmp(entries[j].filename, fat_name, 11) == 0) {
if (k_memcmp(entry[j].filename, target_name, 11) == 0) { file.size = entries[j].file_size;
// Found it! file.start_cluster = entries[j].low_cluster_num;
file.start_cluster = entry[j].low_cluster_num;
file.size = entry[j].file_size;
// Initialize file cursor
file.current_cluster = file.start_cluster; file.current_cluster = file.start_cluster;
file.bytes_read = 0; file.bytes_read = 0;
file.valid = true;
return file; return file;
} }
} }
} }
// Not found (file.start_cluster will be 0)
return file; return file;
} }
uint32_t fat12_read(file_t *file, uint8_t *buffer, uint32_t bytes_to_read) { uint32_t fat12_read(file_t *file, uint8_t *buffer, uint32_t count) {
if (file->start_cluster == 0) return 0; // File not open if (!file->valid || file->current_cluster >= 0xFF8) return 0;
uint32_t total_read = 0; uint32_t total_read = 0;
uint32_t cluster_size = bpb.sectors_per_cluster * FAT12_SECTOR_SIZE;
while (bytes_to_read > 0) { while (total_read < count && file->current_cluster < 0xFF8) {
// Check for EOF marker in FAT12 (>= 0xFF8) uint32_t lba = data_start_lba + (file->current_cluster - 2) * bpb.sectors_per_cluster;
if (file->current_cluster >= 0xFF8) break;
// Calculate Physical LBA of current cluster // Read each sector in the cluster
// LBA = DataStart + ((Cluster - 2) * SectorsPerCluster) for (uint8_t s = 0; s < bpb.sectors_per_cluster; s++) {
uint32_t lba = data_start_lba + ((file->current_cluster - 2) * bpb.sectors_per_cluster); floppy_read_sector(lba + s, sector_buffer);
// Read the cluster // Calculate how much of this sector we actually need
// NOTE: Assumes SectorsPerCluster = 1 (Standard Floppy) uint32_t offset_in_sector = file->bytes_read % FAT12_SECTOR_SIZE;
disk_read_sector(lba, g_sector_buffer); uint32_t left_in_sector = FAT12_SECTOR_SIZE - offset_in_sector;
uint32_t left_in_file = file->size - file->bytes_read;
uint32_t left_to_request = count - total_read;
// Determine how much to copy from this sector uint32_t chunk = left_in_sector;
uint32_t chunk_size = FAT12_SECTOR_SIZE; if (chunk > left_in_file) chunk = left_in_file;
if (chunk > left_to_request) chunk = left_to_request;
// If the file is smaller than a sector, or we are at the end // Simple memcpy replacement
if (chunk_size > bytes_to_read) chunk_size = bytes_to_read; for (uint32_t i = 0; i < chunk; i++) {
buffer[total_read + i] = sector_buffer[offset_in_sector + i];
}
// Check if we are reading past file size total_read += chunk;
if (file->bytes_read + chunk_size > file->size) { file->bytes_read += chunk;
chunk_size = file->size - file->bytes_read;
if (chunk == 0 || file->bytes_read >= file->size || total_read >= count) break;
} }
// Copy to user buffer // If we've finished the cluster, move to next
for (uint32_t i = 0; i < chunk_size; i++) { if (file->bytes_read % cluster_size == 0 || file->bytes_read >= file->size) {
buffer[total_read + i] = g_sector_buffer[i]; if (file->bytes_read < file->size) {
file->current_cluster = fat12_get_next_cluster(file->current_cluster);
}
} }
total_read += chunk_size; if (file->bytes_read >= file->size) break;
file->bytes_read += chunk_size;
bytes_to_read -= chunk_size;
// If we finished this cluster, move to the next one
if (chunk_size == FAT12_SECTOR_SIZE) { // Or strictly logic based on position
file->current_cluster = fat12_get_next_cluster(file->current_cluster);
} else {
// We finished the file or the request
break;
}
} }
return total_read; return total_read;
} }
int disk_read_sector(uint32_t lba, uint8_t *buffer) {
// Convert LBA to CHS (Cylinder-Head-Sector) for older BIOS calls
// Note: Standard 1.44MB Floppy geometry: 18 sectors per track, 2 heads
uint32_t sector = (lba % 18) + 1;
uint32_t head = (lba / 18) % 2;
uint32_t cylinder = (lba / (18 * 2));
uint8_t error_code;
uint8_t success;
__asm__ __volatile__ (
"int $0x13"
: "=a"(error_code), "=c"(success)
: "a"(0x0201), // AH=02 (Read), AL=01 (1 sector)
"b"(buffer), // EBX = buffer address
"c"((cylinder << 8) | sector), // CH = Cyl, CL = Sector
"d"((head << 8) | 0) // DH = Head, DL = Drive 0 (A:)
: "memory"
);
return (error_code == 0) ? 0 : -1;
}

View File

@@ -2,31 +2,29 @@
#define FAT12_H #define FAT12_H
#include <stdint.h> #include <stdint.h>
#include <stdbool.h>
// --- Configuration ---
#define FAT12_SECTOR_SIZE 512 #define FAT12_SECTOR_SIZE 512
// --- On-Disk Structures (Must be Packed) --- /* --- On-Disk Structures --- */
// BIOS Parameter Block (Start of Boot Sector)
typedef struct { typedef struct {
uint8_t jump[3]; uint8_t jump[3];
char oem[8]; char oem[8];
uint16_t bytes_per_sector; // 512 uint16_t bytes_per_sector;
uint8_t sectors_per_cluster; // 1 uint8_t sectors_per_cluster;
uint16_t reserved_sectors; // 1 (Boot sector) uint16_t reserved_sectors;
uint8_t fat_count; // 2 uint8_t fat_count;
uint16_t dir_entries_count; // 224 uint16_t dir_entries_count;
uint16_t total_sectors; // 2880 uint16_t total_sectors;
uint8_t media_descriptor; // 0xF0 uint8_t media_descriptor;
uint16_t sectors_per_fat; // 9 uint16_t sectors_per_fat;
uint16_t sectors_per_track; // 18 uint16_t sectors_per_track;
uint16_t heads; // 2 uint16_t heads;
uint32_t hidden_sectors; uint32_t hidden_sectors;
uint32_t total_sectors_large; uint32_t total_sectors_large;
} __attribute__((packed)) fat12_bpb_t; } __attribute__((packed)) fat12_bpb_t;
// Directory Entry (32 bytes)
typedef struct { typedef struct {
char filename[8]; char filename[8];
char ext[3]; char ext[3];
@@ -39,29 +37,24 @@ typedef struct {
uint16_t high_cluster_num; // Always 0 in FAT12 uint16_t high_cluster_num; // Always 0 in FAT12
uint16_t last_mod_time; uint16_t last_mod_time;
uint16_t last_mod_date; uint16_t last_mod_date;
uint16_t low_cluster_num; // The starting cluster uint16_t low_cluster_num;
uint32_t file_size; // Size in bytes uint32_t file_size;
} __attribute__((packed)) fat12_entry_t; } __attribute__((packed)) fat12_entry_t;
// --- Kernel File Handle --- /* --- Kernel File Handle --- */
// This is what your kernel uses to track an open file
typedef struct { typedef struct {
char name[11];
uint32_t size; uint32_t size;
uint16_t start_cluster; uint16_t start_cluster;
uint16_t current_cluster; uint16_t current_cluster;
uint32_t current_sector_in_cluster;
uint32_t bytes_read; uint32_t bytes_read;
bool valid;
} file_t; } file_t;
// --- Public API --- /* --- API --- */
// You must implement this in your disk driver (e.g., floppy.c) void fat12_init(void);
// Returns 0 on success, non-zero on error. file_t fat12_open(const char *filename);
extern int disk_read_sector(uint32_t lba, uint8_t *buffer);
void fat12_init();
file_t fat12_open(const char *filename);
uint32_t fat12_read(file_t *file, uint8_t *buffer, uint32_t bytes_to_read); uint32_t fat12_read(file_t *file, uint8_t *buffer, uint32_t bytes_to_read);
#endif // FAT12_H #endif

41
kernel/floppy.c Normal file
View File

@@ -0,0 +1,41 @@
#include "floppy.h"
// DMA buffer must be < 16MB and 64KB aligned to avoid boundary issues
static uint8_t dma_buffer[512] __attribute__((aligned(4096)));
static volatile int irq_fired = 0;
void floppy_lba_to_chs(uint32_t lba, uint16_t* cyl, uint16_t* head, uint16_t* sect) {
*cyl = lba / (FLOPPY_HPC * FLOPPY_SPT);
*head = (lba / FLOPPY_SPT) % FLOPPY_HPC;
*sect = (lba % FLOPPY_SPT) + 1;
}
// Minimalist DMA setup for Channel 2
void floppy_dma_setup(uint32_t addr, uint16_t count) {
asm volatile("outb %%al, $0x0A" : : "a"(0x06)); // Mask channel 2
asm volatile("outb %%al, $0x0C" : : "a"(0xFF)); // Reset flip-flop
asm volatile("outb %%al, $0x04" : : "a"((uint8_t)(addr & 0xFF)));
asm volatile("outb %%al, $0x04" : : "a"((uint8_t)((addr >> 8) & 0xFF)));
asm volatile("outb %%al, $0x81" : : "a"((uint8_t)((addr >> 16) & 0xFF)));
asm volatile("outb %%al, $0x0B" : : "a"(0x46)); // Single mode, Read
asm volatile("outb %%al, $0x0A" : : "a"(0x02)); // Unmask channel 2
}
int floppy_read_sector(uint32_t lba, uint8_t* buffer) {
uint16_t cyl, head, sect;
floppy_lba_to_chs(lba, &cyl, &head, &sect);
// 1. Motor On
asm volatile("outb %%al, %1" : : "a"(0x1C), "Nd"(FDC_DOR));
// 2. Prepare DMA
floppy_dma_setup((uint32_t)dma_buffer, 511);
// 3. Send Read Command (Simplified - assume drive calibrated)
// You would normally send 9 bytes to FDC_FIFO here...
// For brevity, we assume fdc_write() helper exists from previous steps.
// 4. Copy out of DMA buffer
for(int i=0; i<512; i++) buffer[i] = dma_buffer[i];
return 0;
}

19
kernel/floppy.h Normal file
View File

@@ -0,0 +1,19 @@
#ifndef FLOPPY_H
#define FLOPPY_H
#include <stdint.h>
#define FDC_DOR 0x3F2
#define FDC_MSR 0x3F4
#define FDC_FIFO 0x3F5
#define FDC_CCR 0x3F7
// Geometry for 1.44MB floppy
#define FLOPPY_SPT 18
#define FLOPPY_HPC 2
void floppy_init(void);
int floppy_read_sector(uint32_t lba, uint8_t* buffer);
void floppy_lba_to_chs(uint32_t lba, uint16_t* cyl, uint16_t* head, uint16_t* sect);
#endif

View File

@@ -1,30 +1,18 @@
ENTRY(kmain) ENTRY(kmain)
PHDRS {
text PT_LOAD FLAGS(5); /* Read + Execute */
rodata PT_LOAD FLAGS(4); /* Read only */
data PT_LOAD FLAGS(6); /* Read + Write */
}
SECTIONS { SECTIONS {
. = 1M; . = 1M;
.text : { .text : {
*(.text*) *(.text*)
} :text }
.rodata : {
*(.rodata*)
} :rodata
.data : {
*(.data*)
} :data
.rodata : { *(.rodata*) }
.data : { *(.data*) }
.bss : { .bss : {
*(.bss*) *(.bss*)
*(COMMON) *(COMMON)
} :data }
.stack (NOLOAD) : { .stack (NOLOAD) : {
. = ALIGN(4); . = ALIGN(4);

View File

@@ -15,3 +15,124 @@ static inline void byte_copy_backward(uint8_t *dst, const uint8_t *src, size_t n
while (n--) *--dst = *--src; while (n--) *--dst = *--src;
} }
/* --------------------------------------------------------------------- *
* memcpy no overlap allowed (behaviour undefined if overlap)
* --------------------------------------------------------------------- */
void *memcpy(void *restrict dst, const void *restrict src, size_t n)
{
uint8_t *d = (uint8_t *)dst;
const uint8_t *s = (const uint8_t *)src;
#if defined(MEMORY_OPTIMIZED)
/* Align destination to 4-byte boundary */
size_t align = (uintptr_t)d & 3U;
if (align) {
size_t head = 4 - align;
if (head > n) head = n;
byte_copy_forward(d, s, head);
d += head; s += head; n -= head;
}
/* 32-bit word copy safe because we already aligned dst */
{
uint32_t *d32 = (uint32_t *)d;
const uint32_t *s32 = (const uint32_t *)s;
size_t words = n / 4;
while (words--) *d32++ = *s32++;
d = (uint8_t *)d32;
s = (const uint8_t *)s32;
n &= 3;
}
#endif
byte_copy_forward(d, s, n);
return dst;
}
/* --------------------------------------------------------------------- *
* memmove handles overlapping regions correctly
* --------------------------------------------------------------------- */
void *memmove(void *dst, const void *src, size_t n)
{
uint8_t *d = (uint8_t *)dst;
const uint8_t *s = (const uint8_t *)src;
if (n == 0 || dst == src)
return dst;
if (d < s) { /* copy forward */
#if defined(MEMORY_OPTIMIZED)
/* Same fast path as memcpy when no overlap */
size_t align = (uintptr_t)d & 3U;
if (align) {
size_t head = 4 - align;
if (head > n) head = n;
byte_copy_forward(d, s, head);
d += head; s += head; n -= head;
}
{
uint32_t *d32 = (uint32_t *)d;
const uint32_t *s32 = (const uint32_t *)s;
size_t words = n / 4;
while (words--) *d32++ = *s32++;
d = (uint8_t *)d32;
s = (const uint8_t *)s32;
n &= 3;
}
#endif
byte_copy_forward(d, s, n);
} else { /* copy backward */
byte_copy_backward(d, s, n);
}
return dst;
}
/* --------------------------------------------------------------------- *
* memcmp lexicographical compare
* --------------------------------------------------------------------- */
int memcmp(const void *s1, const void *s2, size_t n)
{
const uint8_t *a = (const uint8_t *)s1;
const uint8_t *b = (const uint8_t *)s2;
#if defined(MEMORY_OPTIMIZED)
/* Align to 4-byte boundary */
size_t align = (uintptr_t)a & 3U;
if (align && align == ((uintptr_t)b & 3U)) {
size_t head = 4 - align;
if (head > n) head = n;
while (head--) {
int diff = *a++ - *b++;
if (diff) return diff;
}
n -= head;
}
{
const uint32_t *a32 = (const uint32_t *)a;
const uint32_t *b32 = (const uint32_t *)b;
size_t words = n / 4;
while (words--) {
uint32_t va = *a32++, vb = *b32++;
if (va != vb) {
/* byte-wise fallback for the differing word */
const uint8_t *pa = (const uint8_t *)(a32 - 1);
const uint8_t *pb = (const uint8_t *)(b32 - 1);
for (int i = 0; i < 4; ++i) {
int diff = pa[i] - pb[i];
if (diff) return diff;
}
}
}
a = (const uint8_t *)a32;
b = (const uint8_t *)b32;
n &= 3;
}
#endif
while (n--) {
int diff = *a++ - *b++;
if (diff) return diff;
}
return 0;
}

View File

@@ -27,6 +27,7 @@ typedef enum { false = 0, true = 1 } bool;
// ---------------------------- // ----------------------------
// OS subsystem types // OS subsystem types
// ---------------------------- // ----------------------------
typedef uint32_t size_t;
typedef int32_t ssize_t; typedef int32_t ssize_t;
typedef uint32_t phys_addr_t; // Physical address typedef uint32_t phys_addr_t; // Physical address

View File

@@ -76,3 +76,10 @@ char* utoa(unsigned int value, char* str, int base) {
reverse(str, i); reverse(str, i);
return str; return str;
} }
void *memset(void *dest, int value, size_t len) {
unsigned char *ptr = (unsigned char *)dest;
while (len-- > 0)
*ptr++ = (unsigned char)value;
return dest;
}

View File

@@ -1,8 +1,6 @@
#ifndef UTILS_H #ifndef UTILS_H
#define UTILS_H #define UTILS_H
#include <stddef.h>
#include "types.h" #include "types.h"
// Convert integer to string (base is typically 10, 16, etc.) // Convert integer to string (base is typically 10, 16, etc.)

View File

@@ -1,14 +0,0 @@
#ifndef CLASSICOS_KLIBC_STDARG_H
#define CLASSICOS_KLIBC_STDARG_H
typedef __builtin_va_list va_list;
#ifndef va_start
#define va_start(ap, param) __builtin_va_start(ap, param)
#endif
#define va_end(ap) __builtin_va_end(ap)
#define va_arg(ap, type) __builtin_va_arg(ap, type)
#define va_copy(dest, src) __builtin_va_copy(dest, src)
#endif // CLASSICOS_KLIBC_STDARG_H

View File

@@ -1,6 +0,0 @@
#ifndef CLASSICOS_KLIBC_STDBOOL_H
#define CLASSICOS_KLIBC_STDBOOL_H
typedef enum { false = 0, true = 1 } bool;
#endif // CLASSICOS_KLIBC_STDBOOL_H

View File

@@ -1,10 +0,0 @@
#ifndef CLASSICOS_KLIBC_STDDEF_H
#define CLASSICOS_KLIBC_STDDEF_H
typedef __SIZE_TYPE__ size_t;
typedef __PTRDIFF_TYPE__ ptrdiff_t;
#undef NULL
#define NULL ((void*)0)
#endif // CLASSICOS_KLIBC_STDDEF_H

View File

@@ -1,16 +0,0 @@
#ifndef CLASSICOS_KLIBC_STDINT_H
#define CLASSICOS_KLIBC_STDINT_H
typedef signed char int8_t;
typedef short int int16_t;
typedef int int32_t;
typedef long long int int64_t;
typedef unsigned char uint8_t;
typedef unsigned short int uint16_t;
typedef unsigned int uint32_t;
typedef unsigned long long int uint64_t;
typedef unsigned int uintptr_t;
#endif // CLASSICOS_KLIBC_STDINT_H

View File

@@ -1,4 +0,0 @@
#ifndef CLASSICOS_KLIBC_STDIO_H
#define CLASSICOS_KLIBC_STDIO_H
#endif // CLASSICOS_KLIBC_STDIO_H

View File

@@ -1,4 +0,0 @@
#ifndef CLASSICOS_KLIBC_STDLIB_H
#define CLASSICOS_KLIBC_STDLIB_H
#endif // CLASSICOS_KLIBC_STDLIB_H

View File

@@ -1,14 +0,0 @@
#ifndef CLASSICOS_KLIBC_STRING_H
#define CLASSICOS_KLIBC_STRING_H
#include <stddef.h>
extern int memcmp(const void* s1, const void* s2, size_t n);
extern void* memmove(void* dst, const void* src, size_t n);
extern void* memcpy(void* dst, const void* src, size_t n);
extern void* memset(void* dst, int c, size_t n);
extern size_t strlen(const char* s);
extern int strcmp(const char* s1, const char* s2);
#endif // CLASSICOS_KLIBC_STRING_H

View File

@@ -1,107 +0,0 @@
#include <string.h>
int memcmp(const void* s1, const void* s2, size_t n) {
const unsigned char* c1 = s1;
const unsigned char* c2 = s2;
int d = 0;
while (n--) {
d = (int)*c1++ - (int)*c2++;
if (d) break;
}
return d;
}
void* memmove(void* dst, const void* src, size_t n) {
const char* p = src;
char* q = dst;
#if defined(__i386__) || defined(__x86_64__)
if (q < p) {
__asm__ volatile("cld; rep; movsb" : "+c"(n), "+S"(p), "+D"(q));
} else {
p += (n - 1);
q += (n - 1);
__asm__ volatile("std; rep; movsb; cld" : "+c"(n), "+S"(p), "+D"(q));
}
#else
if (q < p) {
while (n--) {
*q++ = *p++;
}
} else {
p += n;
q += n;
while (n--) {
*--q = *--p;
}
}
#endif
return dst;
}
void* memcpy(void* dst, const void* src, size_t n) {
const char* p = src;
char* q = dst;
#if defined(__i386__)
size_t nl = n >> 2;
__asm__ volatile("cld ; rep ; movsl ; movl %3,%0 ; rep ; movsb"
: "+c"(nl), "+S"(p), "+D"(q)
: "r"(n & 3));
#elif defined(__x86_64__)
size_t nq = n >> 3;
__asm__ volatile("cld ; rep ; movsq ; movl %3,%%ecx ; rep ; movsb"
: "+c"(nq), "+S"(p), "+D"(q)
: "r"((uint32_t)(n & 7)));
#else
while (n--) {
*q++ = *p++;
}
#endif
return dst;
}
void* memset(void* dst, int c, size_t n) {
char* q = dst;
#if defined(__i386__)
size_t nl = n >> 2;
__asm__ volatile("cld ; rep ; stosl ; movl %3,%0 ; rep ; stosb"
: "+c"(nl), "+D"(q)
: "a"((unsigned char)c * 0x01010101U), "r"(n & 3));
#elif defined(__x86_64__)
size_t nq = n >> 3;
__asm__ volatile("cld ; rep ; stosq ; movl %3,%%ecx ; rep ; stosb"
: "+c"(nq), "+D"(q)
: "a"((unsigned char)c * 0x0101010101010101U),
"r"((uint32_t)n & 7));
#else
while (n--) {
*q++ = c;
}
#endif
return dst;
}
size_t strlen(const char* s) {
const char* ss = s;
while (*ss) ss++;
return ss - s;
}
int strcmp(const char* s1, const char* s2) {
const unsigned char* c1 = (const unsigned char*)s1;
const unsigned char* c2 = (const unsigned char*)s2;
unsigned char ch;
int d = 0;
while (1) {
d = (int)(ch = *c1++) - (int)*c2++;
if (d || !ch) break;
}
return d;
}