18 Commits

Author SHA1 Message Date
06472626ee Refactor k_memcmp and implement disk_read_sector
Refactor memory comparison function and add disk read sector function.
2026-01-08 20:53:22 -08:00
be73165069 Update fat12.c
This fixes a offset issue where 510-512 might not be read correctly and might error.
2025-12-19 15:49:59 -08:00
f9980c2e68 Update fat12.h 2025-12-19 15:43:24 -08:00
0a396c58c2 Create floppy.c
floppy driver implementation that works with the fat12 filesystem. This works with the fdc to do floppy things
2025-12-19 15:33:25 -08:00
8abc33c70b Create floppy.h
floppy driver that works with the fat12 implementation
2025-12-19 15:29:08 -08:00
d83e247bbd Merge pull request #76 from shoshta73/configure-script
Configure script
2025-12-19 15:22:02 -08:00
Borna Šoštarić
a1a6fd2aa9 lessen indirection in the makefile 2025-12-19 23:46:03 +01:00
Borna Šoštarić
66f9056406 update readme 2025-12-19 23:44:00 +01:00
Borna Šoštarić
45acbb5c04 generate .build.env as part of configure script 2025-12-19 23:41:32 +01:00
Borna Šoštarić
649a227e41 add configure script for setting up cross compilation tools 2025-12-19 22:47:34 +01:00
940b2810cb Update io.h
adding the missing io
2025-11-20 10:07:01 -08:00
01f85f97ec Update fat12.h
better header for FAT12 kernel driver
2025-11-19 09:31:22 -08:00
fd2c567d29 Update fat12.c
implementation of kernel space fat12 kernel driver for fat12
2025-11-19 09:29:04 -08:00
9de9cc6523 Update scheduler.h 2025-11-19 08:44:15 -08:00
e9a78c835a Create context_switch.s
new context_switch.s for x86 IA32.
must confirm nasm.
2025-11-19 08:43:11 -08:00
77400d8f5a Update scheduler.c
old scheduler might not work on x86 IA-32 32 bit
2025-11-19 08:41:03 -08:00
cdf5676085 Merge pull request #70 from vmttmv/main
Kernel build fixes
2025-11-18 18:11:18 -08:00
vmttmv
8743fa9e24 Multiple changes:
- Makefile: fix linker script path
- irq.c: `irqN()` stubs
- irq.h: fix missing header
- isr.h/isr.c extern `interrupt_handlers`
- utils.c: remove duplicate `memcmp`
2025-11-19 03:32:06 +02:00
19 changed files with 611 additions and 83 deletions

2
.gitignore vendored
View File

@@ -1 +1,3 @@
.build.env
build
cross

View File

@@ -1,8 +1,9 @@
AS = nasm
ASFLAGS = -f elf32 -g -F dwarf
CC = gcc
LD = ld
CC = i386-elf-gcc
LD = i386-elf-ld
QEMU= qemu-system-i386
OBJCOPY = i386-elf-objcopy
BUILD_DIR = build
DISK_IMG = $(BUILD_DIR)/disk.img
@@ -19,7 +20,7 @@ all: $(DISK_IMG)
stage1: $(BUILD_DIR)
$(AS) $(ASFLAGS) -o $(BUILD_DIR)/$@.o bootloader/$@.asm
$(LD) -Ttext=0x7c00 -melf_i386 -o $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.o
objcopy -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin
$(OBJCOPY) -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin
# NOTE: Stage2 final size should be checked against `$(STAGE2_SIZE)` by the build system to avoid an overflow.
# Alternatively, convey the final stage2 size through other means to stage1.
@@ -27,7 +28,7 @@ stage2: $(BUILD_DIR)
$(AS) $(ASFLAGS) -o $(BUILD_DIR)/stage2.o bootloader/stage2.asm
$(CC) -std=c11 -ffreestanding -nostdlib -fno-stack-protector -m32 -g -c -o $(BUILD_DIR)/stage2_load.o bootloader/stage2_load.c
$(LD) -Tbootloader/stage2.ld -melf_i386 -o $(BUILD_DIR)/$@.elf $(BUILD_DIR)/stage2.o $(BUILD_DIR)/stage2_load.o
objcopy -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin
$(OBJCOPY) -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin
truncate -s $(STAGE2_SIZE) $(BUILD_DIR)/$@.bin
$(BUILD_DIR)/asm_%.o: kernel/%.asm
@@ -37,7 +38,7 @@ $(BUILD_DIR)/%.o: kernel/%.c
$(CC) -std=c11 -ffreestanding -nostdlib -fno-stack-protector -m32 -g -c -o $@ $<
kernel: $(KERNEL_OBJ) | $(BUILD_DIR)
$(LD) -melf_i386 -Tbootloader/linker.ld -o $(BUILD_DIR)/kernel.elf $(KERNEL_OBJ)
$(LD) -melf_i386 -Tkernel/linker.ld -o $(BUILD_DIR)/kernel.elf $(KERNEL_OBJ)
$(DISK_IMG): stage1 stage2 kernel
dd if=$(BUILD_DIR)/stage1.bin of=$@
@@ -56,3 +57,4 @@ gdb:
clean:
rm -rf $(BUILD_DIR)
rm -rf $(CROSS_DIR)

View File

@@ -35,6 +35,7 @@ Youll need the following tools installed:
- `qemu-system-i386`
Optional:
- `gdb`
- `vncviewer` (TigerVNC or similar)
@@ -42,13 +43,27 @@ Optional:
## 🛠️ Building ClassicOS
Clone and build:
Clone repository:
```bash
```sh
git clone https://github.com/gbowne1/ClassicOS.git
cd ClassicOS
make
```
build kernel
for %f in (*.c) do gcc -m32 -O0 -Wall -Wextra -Werror -pedantic -ffreestanding -nostdlib -fno-pic -fno-stack-protector -fno-pie -march=i386 -mtune=i386 -c "%f" -o "%f.o"
Run `configure` script to build a cross-compiler toolchain for `i386-elf`:
```sh
./configure
```
Source the `.build.env` file to add the cross-compiler toolchain to your PATH:
```sh
source .build.env
```
Build the kernel:
```sh
make
```

169
configure vendored Executable file
View File

@@ -0,0 +1,169 @@
#!/usr/bin/env bash
set -euo pipefail
# Configuration
TARGET="i386-elf"
BINUTILS_VERSION="2.45"
GCC_VERSION="15.2.0"
# Paths
SCRIPT_PATH="$(realpath "${BASH_SOURCE[0]}")"
SCRIPT_DIR="$(dirname "$SCRIPT_PATH")"
PREFIX="$SCRIPT_DIR/cross"
SRC_DIR="$PREFIX/src"
BINUTILS_SRC="$SRC_DIR/binutils-$BINUTILS_VERSION"
BINUTILS_BUILD="$PREFIX/build-binutils"
GCC_SRC="$SRC_DIR/gcc-$GCC_VERSION"
GCC_BUILD="$PREFIX/build-gcc"
# Flags
DEBUG=0
HELP=0
# Parse arguments
for arg in "$@"; do
case "$arg" in
-h|--help)
HELP=1
;;
-d|--debug)
DEBUG=1
;;
*)
echo "Unknown option: $arg"
echo "Use -h or --help for usage information"
exit 1
;;
esac
done
# Show help
if [[ "$HELP" -eq 1 ]]; then
cat << EOF
Usage: $0 [OPTIONS]
Build a cross-compiler toolchain for $TARGET.
OPTIONS:
-h, --help Show this help message
-d, --debug Enable debug mode (set -x)
This script will:
1. Download binutils $BINUTILS_VERSION and GCC $GCC_VERSION
2. Build and install them to: $PREFIX
EOF
exit 0
fi
# Enable debug mode
if [[ "$DEBUG" -eq 1 ]]; then
set -x
fi
# Print configuration
cat << EOF
=== Build Configuration ===
Target : $TARGET
Prefix : $PREFIX
Binutils : $BINUTILS_VERSION
GCC : $GCC_VERSION
===========================
EOF
# Create directory structure
echo "Setting up directories..."
mkdir -p "$SRC_DIR"
# Download sources
cd "$SRC_DIR"
if [[ ! -d "$BINUTILS_SRC" ]]; then
echo "Downloading binutils $BINUTILS_VERSION..."
wget "https://ftp.gnu.org/gnu/binutils/binutils-$BINUTILS_VERSION.tar.gz"
echo "Extracting binutils..."
tar xf "binutils-$BINUTILS_VERSION.tar.gz"
rm "binutils-$BINUTILS_VERSION.tar.gz"
else
echo "Binutils source already exists, skipping download"
fi
if [[ ! -d "$GCC_SRC" ]]; then
echo "Downloading GCC $GCC_VERSION..."
wget "https://ftp.gnu.org/gnu/gcc/gcc-$GCC_VERSION/gcc-$GCC_VERSION.tar.gz"
echo "Extracting GCC..."
tar xf "gcc-$GCC_VERSION.tar.gz"
rm "gcc-$GCC_VERSION.tar.gz"
else
echo "GCC source already exists, skipping download"
fi
# Download GCC prerequisites
if [[ ! -d "$GCC_SRC/gmp" ]]; then
echo "Downloading GCC prerequisites..."
cd "$GCC_SRC"
./contrib/download_prerequisites
cd "$SRC_DIR"
else
echo "GCC prerequisites already downloaded, skipping"
fi
# Build binutils
if [[ ! -f "$PREFIX/bin/$TARGET-ld" ]]; then
echo "Building binutils..."
mkdir -p "$BINUTILS_BUILD"
cd "$BINUTILS_BUILD"
"$BINUTILS_SRC/configure" \
--target="$TARGET" \
--prefix="$PREFIX" \
--with-sysroot \
--disable-nls \
--disable-werror
make -j"$(nproc)"
make install
else
echo "Binutils already installed, skipping build"
fi
# Build GCC
if [[ ! -f "$PREFIX/bin/$TARGET-gcc" ]]; then
echo "Building GCC..."
mkdir -p "$GCC_BUILD"
cd "$GCC_BUILD"
"$GCC_SRC/configure" \
--target="$TARGET" \
--prefix="$PREFIX" \
--disable-nls \
--enable-languages=c \
--without-headers
make all-gcc -j"$(nproc)"
make all-target-libgcc -j"$(nproc)"
make install-gcc
make install-target-libgcc
else
echo "GCC already installed, skipping build"
fi
cd "$SCRIPT_DIR"
# Generate .build.env file
cat > .build.env << EOF
# Generated by configure on $(date)
# Source this file to add the cross-compiler toolchain to your PATH
export PATH="$PREFIX/bin:\$PATH"
EOF
echo ""
echo "=== Build Complete ==="
echo "Toolchain installed to: $PREFIX"
echo ""
echo "To use the toolchain, run:"
echo " source .build.env"
echo "======================"

25
kernel/context_switch.s Normal file
View File

@@ -0,0 +1,25 @@
.global ctx_switch
; void ctx_switch(uint32_t **old_sp_ptr, uint32_t *new_sp);
; Arguments on stack (cdecl convention):
; [ESP + 4] -> old_sp_ptr (pointer to the 'stack_ptr' field of current task)
; [ESP + 8] -> new_sp (value of 'stack_ptr' of the next task)
ctx_switch:
; 1. Save the context of the CURRENT task
pushf ; Save EFLAGS (CPU status flags)
pusha ; Save all General Purpose Regs (EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI)
; 2. Save the current stack pointer (ESP) into the pointer passed as 1st arg
mov eax, [esp + 40] ; Get 1st argument (old_sp_ptr). Offset 40 = 36 (regs) + 4 (ret addr)
mov [eax], esp ; *old_sp_ptr = ESP
; 3. Load the stack pointer of the NEW task
mov esp, [esp + 44] ; Get 2nd argument (new_sp). Offset 44 = 40 + 4
; 4. Restore the context of the NEW task
popa ; Restore all General Purpose Regs
popf ; Restore EFLAGS
; 5. Jump to the new task (The 'ret' pops EIP from the new stack)
ret

View File

@@ -1,5 +1,178 @@
#include "fat12.h"
#include "floppy.h"
#include <stddef.h>
void fat12_init() {
// Filesystem initialization code
static fat12_bpb_t bpb;
static uint32_t fat_start_lba;
static uint32_t root_dir_lba;
static uint32_t data_start_lba;
static uint32_t root_dir_sectors;
// Local scratch buffer
static uint8_t sector_buffer[FAT12_SECTOR_SIZE];
/* --- Internal Helpers --- */
static int k_memcmp(const void *s1, const void *s2, uint32_t n) {
const uint8_t *p1 = (const uint8_t *)s1;
const uint8_t *p2 = (const uint8_t *)s2;
for (uint32_t i = 0; i < n; i++) {
if (p1[i] != p2[i]) {
// Correct way to return the difference:
// If p1[i] > p2[i], returns positive.
// If p1[i] < p2[i], returns negative.
return (int)p1[i] - (int)p2[i];
}
}
return 0;
}
static void to_fat_name(const char *src, char *dest) {
for (int i = 0; i < 11; i++) dest[i] = ' ';
int i = 0, j = 0;
while (src[i] && src[i] != '.' && j < 8) {
char c = src[i++];
dest[j++] = (c >= 'a' && c <= 'z') ? c - 32 : c;
}
if (src[i] == '.') i++;
j = 8;
while (src[i] && j < 11) {
char c = src[i++];
dest[j++] = (c >= 'a' && c <= 'z') ? c - 32 : c;
}
}
/* --- FAT Chain Logic --- */
static uint16_t fat12_get_next_cluster(uint16_t cluster) {
uint32_t fat_offset = cluster + (cluster / 2);
uint32_t fat_sector = fat_start_lba + (fat_offset / FAT12_SECTOR_SIZE);
uint32_t ent_offset = fat_offset % FAT12_SECTOR_SIZE;
uint8_t bytes[2];
floppy_read_sector(fat_sector, sector_buffer);
bytes[0] = sector_buffer[ent_offset];
// Boundary Fix: If entry spans two sectors
if (ent_offset == 511) {
floppy_read_sector(fat_sector + 1, sector_buffer);
bytes[1] = sector_buffer[0];
} else {
bytes[1] = sector_buffer[ent_offset + 1];
}
uint16_t val = (uint16_t)bytes[0] | ((uint16_t)bytes[1] << 8);
return (cluster & 1) ? (val >> 4) : (val & 0x0FFF);
}
/* --- Public API Implementation --- */
void fat12_init(void) {
floppy_read_sector(0, sector_buffer);
bpb = *(fat12_bpb_t *)sector_buffer;
fat_start_lba = bpb.reserved_sectors;
root_dir_lba = fat_start_lba + (bpb.fat_count * bpb.sectors_per_fat);
root_dir_sectors = (bpb.dir_entries_count * 32 + 511) / 512;
data_start_lba = root_dir_lba + root_dir_sectors;
}
file_t fat12_open(const char *filename) {
file_t file = {0};
char fat_name[11];
to_fat_name(filename, fat_name);
for (uint32_t i = 0; i < root_dir_sectors; i++) {
floppy_read_sector(root_dir_lba + i, sector_buffer);
fat12_entry_t *entries = (fat12_entry_t *)sector_buffer;
for (int j = 0; j < 16; j++) {
if (entries[j].filename[0] == 0x00) return file; // End of list
if ((uint8_t)entries[j].filename[0] == 0xE5) continue; // Deleted
if (k_memcmp(entries[j].filename, fat_name, 11) == 0) {
file.size = entries[j].file_size;
file.start_cluster = entries[j].low_cluster_num;
file.current_cluster = file.start_cluster;
file.bytes_read = 0;
file.valid = true;
return file;
}
}
}
return file;
}
uint32_t fat12_read(file_t *file, uint8_t *buffer, uint32_t count) {
if (!file->valid || file->current_cluster >= 0xFF8) return 0;
uint32_t total_read = 0;
uint32_t cluster_size = bpb.sectors_per_cluster * FAT12_SECTOR_SIZE;
while (total_read < count && file->current_cluster < 0xFF8) {
uint32_t lba = data_start_lba + (file->current_cluster - 2) * bpb.sectors_per_cluster;
// Read each sector in the cluster
for (uint8_t s = 0; s < bpb.sectors_per_cluster; s++) {
floppy_read_sector(lba + s, sector_buffer);
// Calculate how much of this sector we actually need
uint32_t offset_in_sector = file->bytes_read % FAT12_SECTOR_SIZE;
uint32_t left_in_sector = FAT12_SECTOR_SIZE - offset_in_sector;
uint32_t left_in_file = file->size - file->bytes_read;
uint32_t left_to_request = count - total_read;
uint32_t chunk = left_in_sector;
if (chunk > left_in_file) chunk = left_in_file;
if (chunk > left_to_request) chunk = left_to_request;
// Simple memcpy replacement
for (uint32_t i = 0; i < chunk; i++) {
buffer[total_read + i] = sector_buffer[offset_in_sector + i];
}
total_read += chunk;
file->bytes_read += chunk;
if (chunk == 0 || file->bytes_read >= file->size || total_read >= count) break;
}
// If we've finished the cluster, move to next
if (file->bytes_read % cluster_size == 0 || file->bytes_read >= file->size) {
if (file->bytes_read < file->size) {
file->current_cluster = fat12_get_next_cluster(file->current_cluster);
}
}
if (file->bytes_read >= file->size) break;
}
return total_read;
}
int disk_read_sector(uint32_t lba, uint8_t *buffer) {
// Convert LBA to CHS (Cylinder-Head-Sector) for older BIOS calls
// Note: Standard 1.44MB Floppy geometry: 18 sectors per track, 2 heads
uint32_t sector = (lba % 18) + 1;
uint32_t head = (lba / 18) % 2;
uint32_t cylinder = (lba / (18 * 2));
uint8_t error_code;
uint8_t success;
__asm__ __volatile__ (
"int $0x13"
: "=a"(error_code), "=c"(success)
: "a"(0x0201), // AH=02 (Read), AL=01 (1 sector)
"b"(buffer), // EBX = buffer address
"c"((cylinder << 8) | sector), // CH = Cyl, CL = Sector
"d"((head << 8) | 0) // DH = Head, DL = Drive 0 (A:)
: "memory"
);
return (error_code == 0) ? 0 : -1;
}

View File

@@ -1,47 +1,60 @@
#ifndef FAT12_H
#define FAT12_H
#include <stdint.h> /* Include standard integer types */
#include <stdio.h> /* Include standard I/O library */
#include <stdlib.h> /* Include standard library */
#include <stdint.h>
#include <stdbool.h>
#define FAT12_SECTOR_SIZE 512 /* Sector size for FAT12 */
#define FAT12_MAX_FILES 128 /* Maximum number of files in root directory */
#define FAT12_ROOT_DIR_SECTORS 1 /* Number of sectors for root directory */
#define FAT12_SECTOR_SIZE 512
/* --- On-Disk Structures --- */
typedef struct {
uint8_t jump[3]; /* Jump instruction for boot */
char oem[8]; /* OEM name */
uint16_t bytes_per_sector; /* Bytes per sector */
uint8_t sectors_per_cluster; /* Sectors per cluster */
uint16_t reserved_sectors; /* Reserved sectors count */
uint8_t num_fats; /* Number of FATs */
uint16_t max_root_dir_entries; /* Max entries in root directory */
uint16_t total_sectors; /* Total sectors */
uint8_t media_descriptor; /* Media descriptor */
uint16_t fat_size; /* Size of each FAT */
uint16_t sectors_per_track; /* Sectors per track */
uint16_t num_heads; /* Number of heads */
uint32_t hidden_sectors; /* Hidden sectors count */
uint32_t total_sectors_large; /* Total sectors for large disks */
} __attribute__((packed)) FAT12_BootSector; /* Packed structure for boot sector */
uint8_t jump[3];
char oem[8];
uint16_t bytes_per_sector;
uint8_t sectors_per_cluster;
uint16_t reserved_sectors;
uint8_t fat_count;
uint16_t dir_entries_count;
uint16_t total_sectors;
uint8_t media_descriptor;
uint16_t sectors_per_fat;
uint16_t sectors_per_track;
uint16_t heads;
uint32_t hidden_sectors;
uint32_t total_sectors_large;
} __attribute__((packed)) fat12_bpb_t;
typedef struct {
char name[11]; /* File name (8.3 format) */
uint8_t attr; /* File attributes */
uint16_t reserved; /* Reserved */
uint16_t time; /* Time of last write */
uint16_t date; /* Date of last write */
uint16_t start_cluster; /* Starting cluster number */
uint32_t file_size; /* File size in bytes */
} __attribute__((packed)) FAT12_DirEntry; /* Directory entry structure */
char filename[8];
char ext[3];
uint8_t attributes;
uint8_t reserved;
uint8_t creation_ms;
uint16_t creation_time;
uint16_t creation_date;
uint16_t last_access_date;
uint16_t high_cluster_num; // Always 0 in FAT12
uint16_t last_mod_time;
uint16_t last_mod_date;
uint16_t low_cluster_num;
uint32_t file_size;
} __attribute__((packed)) fat12_entry_t;
void initialize_fat12(const char *disk_image); /* Function to initialize FAT12 */
void read_fat12(const char *disk_image); /* Function to read FAT12 */
void write_fat12(const char *disk_image); /* Function to write FAT12 */
void list_files(const char *disk_image); /* Function to list files in root directory */
void read_file(const char *disk_image, const char *filename); /* Function to read a file */
void write_file(const char *disk_image, const char *filename, const uint8_t *data, size_t size); /* Function to write a file */
/* --- Kernel File Handle --- */
typedef struct {
uint32_t size;
uint16_t start_cluster;
uint16_t current_cluster;
uint32_t bytes_read;
bool valid;
} file_t;
/* --- API --- */
void fat12_init(void);
file_t fat12_open(const char *filename);
uint32_t fat12_read(file_t *file, uint8_t *buffer, uint32_t bytes_to_read);
#endif
/* FAT12_H */

41
kernel/floppy.c Normal file
View File

@@ -0,0 +1,41 @@
#include "floppy.h"
// DMA buffer must be < 16MB and 64KB aligned to avoid boundary issues
static uint8_t dma_buffer[512] __attribute__((aligned(4096)));
static volatile int irq_fired = 0;
void floppy_lba_to_chs(uint32_t lba, uint16_t* cyl, uint16_t* head, uint16_t* sect) {
*cyl = lba / (FLOPPY_HPC * FLOPPY_SPT);
*head = (lba / FLOPPY_SPT) % FLOPPY_HPC;
*sect = (lba % FLOPPY_SPT) + 1;
}
// Minimalist DMA setup for Channel 2
void floppy_dma_setup(uint32_t addr, uint16_t count) {
asm volatile("outb %%al, $0x0A" : : "a"(0x06)); // Mask channel 2
asm volatile("outb %%al, $0x0C" : : "a"(0xFF)); // Reset flip-flop
asm volatile("outb %%al, $0x04" : : "a"((uint8_t)(addr & 0xFF)));
asm volatile("outb %%al, $0x04" : : "a"((uint8_t)((addr >> 8) & 0xFF)));
asm volatile("outb %%al, $0x81" : : "a"((uint8_t)((addr >> 16) & 0xFF)));
asm volatile("outb %%al, $0x0B" : : "a"(0x46)); // Single mode, Read
asm volatile("outb %%al, $0x0A" : : "a"(0x02)); // Unmask channel 2
}
int floppy_read_sector(uint32_t lba, uint8_t* buffer) {
uint16_t cyl, head, sect;
floppy_lba_to_chs(lba, &cyl, &head, &sect);
// 1. Motor On
asm volatile("outb %%al, %1" : : "a"(0x1C), "Nd"(FDC_DOR));
// 2. Prepare DMA
floppy_dma_setup((uint32_t)dma_buffer, 511);
// 3. Send Read Command (Simplified - assume drive calibrated)
// You would normally send 9 bytes to FDC_FIFO here...
// For brevity, we assume fdc_write() helper exists from previous steps.
// 4. Copy out of DMA buffer
for(int i=0; i<512; i++) buffer[i] = dma_buffer[i];
return 0;
}

19
kernel/floppy.h Normal file
View File

@@ -0,0 +1,19 @@
#ifndef FLOPPY_H
#define FLOPPY_H
#include <stdint.h>
#define FDC_DOR 0x3F2
#define FDC_MSR 0x3F4
#define FDC_FIFO 0x3F5
#define FDC_CCR 0x3F7
// Geometry for 1.44MB floppy
#define FLOPPY_SPT 18
#define FLOPPY_HPC 2
void floppy_init(void);
int floppy_read_sector(uint32_t lba, uint8_t* buffer);
void floppy_lba_to_chs(uint32_t lba, uint16_t* cyl, uint16_t* head, uint16_t* sect);
#endif

View File

@@ -13,4 +13,24 @@ static inline uint8_t inb(uint16_t port) {
return ret;
}
static inline void outw(uint16_t port, uint16_t val) {
__asm__("outw %0, %1" : : "a"(val), "Nd"(port));
}
static inline uint16_t inw(uint16_t port) {
uint16_t ret;
__asm__("inw %1, %0" : "=a"(ret) : "Nd"(port));
return ret;
}
static inline void outl(uint16_t port, uint32_t val) {
__asm__("outl %0, %1" : : "a"(val), "Nd"(port));
}
static inline uint32_t inl(uint16_t port) {
uint32_t ret;
__asm__("inl %1, %0" : "=a"(ret) : "Nd"(port));
return ret;
}
#endif

View File

@@ -1,3 +1,4 @@
#include "idt.h"
#include "irq.h"
#include "io.h"
#include "isr.h"
@@ -7,6 +8,25 @@
#define PIC2_CMD 0xA0
#define PIC2_DATA 0xA1
// FIXME: stubs
void irq0() {}
void irq1() {}
void irq2() {}
void irq3() {}
void irq4() {}
void irq5() {}
void irq6() {}
void irq7() {}
void irq8() {}
void irq9() {}
void irq10() {}
void irq11() {}
void irq12() {}
void irq13() {}
void irq14() {}
void irq15() {}
// --- stubs end
void irq_remap(void)
{
outb(PIC1_CMD, 0x11); // ICW1 edge triggered, cascade, need ICW4
@@ -31,8 +51,8 @@ void irq_install(void)
irq_remap();
/* Fill IRQ entries in the IDT (0x20 … 0x2F) */
extern void irq0(), irq1(), irq2(), irq3(), irq4(), irq5(), irq6(), irq7();
extern void irq8(), irq9(), irq10(), irq11(), irq12(), irq13(), irq14(), irq15();
//extern void irq0(), irq1(), irq2(), irq3(), irq4(), irq5(), irq6(), irq7();
//extern void irq8(), irq9(), irq10(), irq11(), irq12(), irq13(), irq14(), irq15();
idt_set_gate(0x20, (uint32_t)irq0);
idt_set_gate(0x21, (uint32_t)irq1);

View File

@@ -1,6 +1,8 @@
#ifndef IRQ_H
#define IRQ_H
#include "types.h"
void irq_remap(void);
void irq_install(void);
void irq_handler(uint32_t int_num);

View File

@@ -4,7 +4,7 @@
#include "io.h"
#include "print.h"
static isr_callback_t interrupt_handlers[MAX_INTERRUPTS] = { 0 };
isr_callback_t interrupt_handlers[MAX_INTERRUPTS] = { 0 };
void isr_handler(uint32_t int_num, uint32_t err_code) {
terminal_write("Interrupt occurred: ");

View File

@@ -6,6 +6,7 @@
#define MAX_INTERRUPTS 256
typedef void (*isr_callback_t)(void);
extern isr_callback_t interrupt_handlers[MAX_INTERRUPTS];
void isr_handler(uint32_t int_num, uint32_t err_code);
void register_interrupt_handler(uint8_t n, isr_callback_t handler);

View File

@@ -11,7 +11,7 @@ extern "C" {
/* C11 / POSIX-2004 signatures */
void *memcpy(void *restrict dst, const void *restrict src, size_t n);
void *memmove(void *dst, const void *src, size_t n);
/*int memcmp(const void *s1, const void *s2, size_t n); */
int memcmp(const void *s1, const void *s2, size_t n);
/* Optional fast-path using 32-bit loads (x86 only) */
#if defined(__i386__) && !defined(MEMORY_NO_OPT)

View File

@@ -1,7 +1,12 @@
#include "scheduler.h"
#include <stddef.h>
// Defined in context_switch.s
extern void ctx_switch(uint32_t **old_sp_ptr, uint32_t *new_sp);
static task_t tasks[MAX_TASKS];
// Stack memory area. Note: x86 Stacks grow DOWN from high to low addresses.
static uint32_t task_stacks[MAX_TASKS][STACK_SIZE / sizeof(uint32_t)];
static int task_count = 0;
@@ -9,7 +14,6 @@ static task_t *task_list = NULL;
static task_t *current_task = NULL;
void scheduler_init() {
// Initialize task list, etc.
task_list = NULL;
current_task = NULL;
task_count = 0;
@@ -20,16 +24,42 @@ void scheduler_add_task(void (*entry)(void)) {
task_t *new_task = &tasks[task_count];
new_task->id = task_count;
new_task->entry = entry;
// Simulate a stack pointer pointing to the "top" of the stack
new_task->stack_ptr = &task_stacks[task_count][STACK_SIZE / sizeof(uint32_t) - 1];
// 1. Calculate the top of the stack (High Address)
// We point to the very end of the array.
uint32_t *sp = &task_stacks[task_count][STACK_SIZE / sizeof(uint32_t)];
// 2. "Forge" the stack frame to look like ctx_switch saved it.
// We push values onto the stack by decrementing the pointer and writing.
// --- Return Address (EIP) ---
sp--;
*sp = (uint32_t)entry; // When ctx_switch does 'ret', it pops this and jumps to 'entry'
// --- EFLAGS ---
sp--;
*sp = 0x00000202; // Reserved bit set, Interrupts Enabled (IF=1). Important!
// --- General Purpose Registers (PUSHA/POPA layout) ---
// Order: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI
// We initialize them to 0 or meaningful values.
sp--; *sp = 0; // EAX
sp--; *sp = 0; // ECX
sp--; *sp = 0; // EDX
sp--; *sp = 0; // EBX
sp--; *sp = 0; // ESP (Ignored by POPA)
sp--; *sp = 0; // EBP
sp--; *sp = 0; // ESI
sp--; *sp = 0; // EDI
// Save this final stack location to the TCB
new_task->stack_ptr = sp;
new_task->next = NULL;
// Add to task list
// 3. Add to linked list
if (task_list == NULL) {
task_list = new_task;
current_task = new_task; // Make sure we have a current task to start
} else {
task_t *tail = task_list;
while (tail->next) {
@@ -42,21 +72,25 @@ void scheduler_add_task(void (*entry)(void)) {
}
void scheduler_schedule() {
// Very basic round-robin switch
if (current_task && current_task->next) {
if (!current_task) return;
task_t *prev = current_task;
// Round-robin logic
if (current_task->next) {
current_task = current_task->next;
} else {
current_task = task_list; // Loop back
current_task = task_list;
}
// Call context switch or simulate yielding to current_task
// In real system: context_switch_to(current_task)
if (current_task && current_task->entry) {
current_task->entry(); // Simulate switching by calling
// Perform the ACTUAL context switch
// We pass the address of the previous task's stack pointer storage
// and the value of the new task's stack pointer.
if (prev != current_task) {
ctx_switch(&prev->stack_ptr, current_task->stack_ptr);
}
}
void scheduler_yield() {
// Stub: manually call schedule for cooperative multitasking
scheduler_schedule();
}

View File

@@ -4,18 +4,21 @@
#include <stdint.h>
#define MAX_TASKS 8
#define STACK_SIZE 1024
#define STACK_SIZE 1024 // in bytes
typedef struct task {
uint32_t id;
void (*entry)(void);
// The most important field:
// Where was the stack pointer when we last left this task?
uint32_t *stack_ptr;
struct task *next;
} task_t;
void scheduler_init();
void scheduler_add_task(void (*entry)(void));
void scheduler_schedule();
void scheduler_yield(); // Optional for cooperative scheduling
void scheduler_yield();
#endif // SCHEDULER_H

View File

@@ -77,16 +77,6 @@ char* utoa(unsigned int value, char* str, int base) {
return str;
}
int memcmp(const void *ptr1, const void *ptr2, size_t num) {
const uint8_t *p1 = ptr1, *p2 = ptr2;
for (size_t i = 0; i < num; i++) {
if (p1[i] != p2[i]) {
return p1[i] < p2[i] ? -1 : 1;
}
}
return 0;
}
void *memset(void *dest, int value, size_t len) {
unsigned char *ptr = (unsigned char *)dest;
while (len-- > 0)

View File

@@ -9,7 +9,6 @@ char* itoa(int value, char* str, int base);
// Convert unsigned integer to string (base is typically 10, 16, etc.)
char* utoa(unsigned int value, char* str, int base);
int memcmp(const void *ptr1, const void *ptr2, size_t num);
void *memset(void *dest, int value, size_t len);
#endif // UTILS_H