7 Commits

205
main.c
View File

@@ -1,11 +1,12 @@
#include <stddef.h> #include <stddef.h>
#include <stdio.h> #include <stdio.h>
#include <unistd.h> #include <unistd.h>
#include <sys/syscall.h> #include <stdlib.h>
#include <string.h>
#define ALIGN4(s) (((((s)-1)>>2)<<2)+4) #define ALIGN16(s) (((s) + 15) & ~0x0F)
#define BLOCK_SIZE sizeof(struct block) #define BLOCK_SIZE sizeof(struct block)
#define MINIMUM_BLOCK_SIZE 4 #define MINIMUM_BLOCK_SIZE (sizeof(struct block) + 16)
/// The memory block's header. /// The memory block's header.
struct block struct block
@@ -28,10 +29,16 @@ struct block* extend_heap(size_t s)
if (s < MINIMUM_BLOCK_SIZE) if (s < MINIMUM_BLOCK_SIZE)
s = MINIMUM_BLOCK_SIZE; s = MINIMUM_BLOCK_SIZE;
struct block* b = (struct block*)syscall(SYS_brk, NULL); struct block *b = (struct block *)sbrk(0); // Get the current break
if ((void*)syscall(SYS_brk, (char*)(b + 1) + s) == (void*)-1) // Attempt to extend the break by s bytes
void *new_break = sbrk(BLOCK_SIZE + s);
if (new_break == (void *)-1)
{
// Handle the error, e.g., by setting an error code or printing an error message
fprintf(stderr, "Failed to extend heap by %zu bytes.\n", s);
return NULL; return NULL;
}
b->size = s; b->size = s;
b->prev = last; b->prev = last;
@@ -64,17 +71,55 @@ struct block* find_first(size_t s)
/// @returns The new memory block. /// @returns The new memory block.
struct block *fragment_block(struct block *in, size_t s) struct block *fragment_block(struct block *in, size_t s)
{ {
size_t totalSize = BLOCK_SIZE + s; // Calculate the size of the new block, including the block header
struct block* b = (struct block*)((char*)(in + 1) + (in->size - totalSize)); size_t newBlockSize = s + BLOCK_SIZE;
b->size = s;
b->prev = in;
b->next = in->next;
b->free = 0;
in->size -= totalSize; // Check if the current block can be split
in->next = b; if (in->size <= newBlockSize)
{
// Cannot split, return the original block
return in;
}
return b; // Calculate the size of the remainder block
size_t remainderSize = in->size - newBlockSize;
// Create the new block in the remainder space
struct block *newBlock = (struct block *)((char *)(in + 1) + s);
newBlock->size = remainderSize; // Subtract the size of the block header
newBlock->prev = in;
newBlock->next = in->next;
newBlock->free = 1; // Set the new block as free
// Update the current block to reflect the reduced size
in->size = newBlockSize; // Subtract the size of the block header
in->next = newBlock;
// Insert the new block into the linked list of blocks
if (newBlock->next)
{
newBlock->next->prev = newBlock;
}
return newBlock;
}
struct block *find_best_fit(size_t s)
{
struct block *current = first;
struct block *best_fit = NULL;
while (current)
{
if (current->free && current->size >= s)
{
if (best_fit == NULL || current->size < best_fit->size)
{
best_fit = current;
}
}
current = current->next;
}
return best_fit; // This return statement is now outside the while loop
} }
/// Will find or allocate a memory block. /// Will find or allocate a memory block.
@@ -83,48 +128,74 @@ struct block* fragment_block(struct block* in, size_t s)
/// @todo Fragmenting functionality. /// @todo Fragmenting functionality.
void *malloc(size_t size) void *malloc(size_t size)
{ {
struct block* b; if (size == 0)
{
return NULL;
}
size = ALIGN4(size); size = ALIGN16(size); // First align the requested size
size_t total_size = size + BLOCK_SIZE; // Then add the size of the block header
struct block *b;
if (first) if (first)
{ {
b = find_first(size); b = find_best_fit(size);
if (!b) if (!b)
b = extend_heap(size); {
else if (b->size > BLOCK_SIZE + size) b = extend_heap(total_size);
if (!b)
{
return NULL; // Check if heap extension failed
}
}
else if (b->size > total_size + MINIMUM_BLOCK_SIZE)
{
b = fragment_block(b, size); b = fragment_block(b, size);
} }
}
else else
{ {
b = extend_heap(size); b = extend_heap(total_size);
if (!b) if (!b)
{
return NULL; return NULL;
}
first = b; first = b;
} }
return b + 1; b->free = 0; // Mark the block as used
return (char *)b + BLOCK_SIZE; // Return a pointer to the usable memory
} }
void *realloc(void *ptr, size_t new_size) void *realloc(void *ptr, size_t new_size)
{ {
if (!ptr) if (!ptr)
{
return malloc(new_size); return malloc(new_size);
}
if (!new_size) if (new_size == 0)
{
free(ptr);
return NULL; return NULL;
}
struct block* b = (struct block*)ptr - 1; struct block *b = (struct block *)((char *)ptr - BLOCK_SIZE);
if (b->free) if (b->size >= new_size + BLOCK_SIZE)
return NULL; {
return ptr; // The block is already big enough
}
if (b->size == new_size) void *new_ptr = malloc(new_size);
return ptr; if (!new_ptr)
else if (b->size > BLOCK_SIZE + new_size) {
return fragment_block(b, new_size) + 1; return NULL; // Allocation failed
}
memcpy(new_ptr, ptr, b->size - BLOCK_SIZE); // Copy old data to new block, excluding the header size
free(ptr); // Free the old block
return NULL; return new_ptr;
} }
/// Will flag the provided memory as free and will defragment other blocks adjacent to it. /// Will flag the provided memory as free and will defragment other blocks adjacent to it.
@@ -133,53 +204,93 @@ void* realloc(void* ptr, size_t new_size)
void free(void *ptr) void free(void *ptr)
{ {
if (!ptr) if (!ptr)
{
return; return;
}
struct block* b = (struct block*)ptr - 1; struct block *b = (struct block *)((char *)ptr - BLOCK_SIZE);
if (b->free) if (b->free)
return; {
fprintf(stderr, "Double free detected at block %p.\n", ptr);
abort(); // Terminate the program immediately due to serious error
}
b->free = 1; b->free = 1;
// Coalesce free blocks
while (b->prev && b->prev->free) while (b->prev && b->prev->free)
{
// Merge with previous block
b->prev->size += BLOCK_SIZE + b->size;
b->prev->next = b->next;
b = b->prev; b = b->prev;
}
while (b->next && b->next->free) // If there is a next block and it's free, merge with it
if (b->next && b->next->free)
{ {
b->size += BLOCK_SIZE + b->next->size; b->size += BLOCK_SIZE + b->next->size;
b->next = b->next->next; b->next = b->next->next;
if (b->next)
{
b->next->prev = b; // Update the prev pointer of the next block
}
} }
// After merging, update the 'last' pointer if necessary
if (!b->next) if (!b->next)
syscall(SYS_brk, b); {
last = b;
}
// Check if we can shrink the heap
if (b == last)
{
// Update 'last' to the previous block or NULL if there's no previous block
last = b->prev;
if (last)
{
last->next = NULL;
}
else
{
first = NULL;
}
// Reduce the program break to release the memory
sbrk(0 - (b->size + BLOCK_SIZE));
}
} }
/// Retrieves the total heap usage in bytes.
/// @returns Usage in bytes.
size_t get_heap_size() size_t get_heap_size()
{ {
if (!first || !last) size_t total_size = 0;
return 0; struct block *current = first;
return ((char*)last + last->size) - (char*)first; while (current != NULL)
{
total_size += current->size;
current = current->next;
}
return total_size;
} }
int main() int main()
{ {
int* a = (int*)malloc(1); int *a = (int *)malloc(sizeof(int));
int* b = (int*)malloc(1); int *b = (int *)malloc(sizeof(int));
int *c = (int *)malloc(sizeof(int)); // Allocate memory for c
*a = 5; *a = 5;
*b = 12; *b = 12;
printf("Test 1: %i\n", *a); printf("Test 1: %i\n", *a);
printf("Test 2: %i\n", *b); printf("Test 2: %i\n", *b);
printf("Heap Size: %zu Bytes\n", get_heap_size()); printf("Heap Size: %zu Bytes\n", get_heap_size()); // Assuming get_heap_size is implemented
free(a); free(a); // Free memory for a
free(b); free(b); // Free memory for b
free(c); // Free memory for c
int* c = (int*)malloc(sizeof(int));
return 0; return 0;
} }