Merge pull request 'gbowne1 version of implementation with more implementations done' (#4) from gbowne1_impl into main

Reviewed-on: #4
This commit is contained in:
Arron David Nelson 2024-02-14 18:08:17 -08:00
commit f341253aa8

233
main.c
View File

@ -1,36 +1,39 @@
#include <stddef.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/syscall.h>
#include <stdlib.h>
#define ALIGN4(s) (((((s)-1)>>2)<<2)+4)
#define ALIGN16(s) (((s) + 15) & ~0x0F)
#define BLOCK_SIZE sizeof(struct block)
#define MINIMUM_BLOCK_SIZE 4
#define MINIMUM_BLOCK_SIZE (sizeof(struct block) + 16)
/// The memory block's header.
struct block
{
size_t size;
struct block* prev;
struct block* next;
struct block *prev;
struct block *next;
int free;
};
struct block* first = NULL;
struct block* last = NULL;
struct block *first = NULL;
struct block *last = NULL;
/// Extends heap memory upwards, towards zero.
/// @param [in] s The size of the memory needed aligned by 4 bytes.
/// @returns The new memory block.
struct block* extend_heap(size_t s)
struct block *extend_heap(size_t s)
{
// Ensure the allocated size is at least the minimum block size
if (s < MINIMUM_BLOCK_SIZE)
s = MINIMUM_BLOCK_SIZE;
struct block* b = (struct block*)syscall(SYS_brk, NULL);
struct block *b = (struct block *)sbrk(0); // Get the current break
if ((void*)syscall(SYS_brk, (char*)(b + 1) + s) == (void*)-1)
// Add the size of the block header to the requested size
s += BLOCK_SIZE;
if (sbrk(s) == (void *)-1) // Extend the break by s bytes
return NULL;
b->size = s;
@ -49,9 +52,9 @@ struct block* extend_heap(size_t s)
/// Finds the first block that will fit the given size.
/// @param [in] s The 4 byte aligned size to look for.
/// @returns The matching available memory block.
struct block* find_first(size_t s)
struct block *find_first(size_t s)
{
struct block* current = first;
struct block *current = first;
while (current && (!current->free || current->size < s))
current = current->next;
@ -62,112 +65,204 @@ struct block* find_first(size_t s)
/// @param [in] in The memory block to fragment.
/// @param [in] s The size of the new memory block.
/// @returns The new memory block.
struct block* fragment_block(struct block* in, size_t s)
struct block *fragment_block(struct block *in, size_t s)
{
size_t totalSize = BLOCK_SIZE + s;
struct block* b = (struct block*)((char*)(in + 1) + (in->size - totalSize));
b->size = s;
b->prev = in;
b->next = in->next;
b->free = 0;
// Calculate the size of the new block, including the block header
size_t newBlockSize = s + BLOCK_SIZE;
in->size -= totalSize;
in->next = b;
// Check if the current block can be split
if (in->size <= newBlockSize)
{
// Cannot split, return the original block
return in;
}
return b;
// Calculate the size of the remainder block
size_t remainderSize = in->size - newBlockSize;
// Create the new block in the remainder space
struct block *newBlock = (struct block *)((char *)(in + 1) + s);
newBlock->size = remainderSize;
newBlock->prev = in;
newBlock->next = in->next;
newBlock->free = 1; // Set the new block as free
// Update the current block to reflect the reduced size
in->size = newBlockSize;
in->next = newBlock;
// Insert the new block into the linked list of blocks
if (newBlock->next)
{
newBlock->next->prev = newBlock;
}
return newBlock;
}
struct block *find_best_fit(size_t s)
{
struct block *current = first;
struct block *best_fit = NULL;
while (current)
{
if (current->free && current->size >= s)
{
if (best_fit && current->size < best_fit->size) // Check for NULL before comparison
{
{
best_fit = current;
}
}
current = current->next;
}
return best_fit;
}
}
/// Will find or allocate a memory block.
/// @param [in] size The size of the memory block to request.
/// @returns The requested memory on the heap.
/// @todo Fragmenting functionality.
void* malloc(size_t size)
void *malloc(size_t size)
{
struct block* b;
if (size == 0)
{
return NULL;
}
size = ALIGN4(size);
size = ALIGN16(size); // First align the requested size
size_t total_size = size + BLOCK_SIZE; // Then add the size of the block header
struct block *b;
if (first)
{
b = find_first(size);
b = find_best_fit(size);
if (!b)
b = extend_heap(size);
else if (b->size > BLOCK_SIZE + size)
{
b = extend_heap(total_size);
if (!b)
{
return NULL; // Check if heap extension failed
}
}
else if (b->size > total_size + MINIMUM_BLOCK_SIZE)
{
b = fragment_block(b, size);
}
}
else
{
b = extend_heap(size);
b = extend_heap(total_size);
if (!b)
{
return NULL;
}
first = b;
}
return b + 1;
b->free = 0; // Mark the block as used
return (char *)b + BLOCK_SIZE; // Return a pointer to the usable memory
}
void* realloc(void* ptr, size_t new_size)
void *realloc(void *ptr, size_t new_size)
{
if (!ptr)
{
return malloc(new_size);
}
if (!new_size)
if (new_size == 0)
{
free(ptr);
return NULL;
}
struct block* b = (struct block*)ptr - 1;
if (b->free)
return NULL;
struct block *b = (struct block *)((char *)ptr - BLOCK_SIZE);
if (b->size >= new_size + BLOCK_SIZE)
{
return ptr; // The block is already big enough
}
if (b->size == new_size)
return ptr;
else if (b->size > BLOCK_SIZE + new_size)
return fragment_block(b, new_size) + 1;
void *new_ptr = malloc(new_size);
if (!new_ptr)
{
return NULL; // Allocation failed
}
memcpy(new_ptr, ptr, b->size - BLOCK_SIZE); // Copy old data to new block, excluding the header size
free(ptr); // Free the old block
return NULL;
return new_ptr;
}
/// Will flag the provided memory as free and will defragment other blocks adjacent to it.
/// @param [in] ptr The memory to flag as free.
/// @note If all data after the provided memory is free, it will reduce the heap size.
void free(void* ptr)
void my_custom_free(void *ptr)
{
if (!ptr)
return;
if (!ptr)
{
return;
}
struct block* b = (struct block*)ptr - 1;
if (b->free)
return;
struct block *b = (struct block *)((char *)ptr - BLOCK_SIZE);
if (b->free)
{
fprintf(stderr, "Double free detected at block %p.\n", ptr);
abort(); // Terminate the program immediately due to serious error
}
b->free = 1;
b->free = 1;
while (b->prev && b->prev->free)
b = b->prev;
// Coalesce free blocks
while (b->prev && b->prev->free)
{
// Merge with previous block
b->prev->size += BLOCK_SIZE + b->size;
b->prev->next = b->next;
b = b->prev;
}
while (b->next && b->next->free)
{
b->size += BLOCK_SIZE + b->next->size;
b->next = b->next->next;
}
// If there is a next block and it's free, merge with it
if (b->next && b->next->free)
{
b->size += BLOCK_SIZE + b->next->size;
b->next = b->next->next;
if (b->next)
{
b->next->prev = b;
}
}
if (!b->next)
syscall(SYS_brk, b);
}
// After merging, update the 'last' pointer if necessary
if (!b->next)
{
last = b;
}
/// Retrieves the total heap usage in bytes.
/// @returns Usage in bytes.
size_t get_heap_size()
{
if (!first || !last)
return 0;
return ((char*)last + last->size) - (char*)first;
// Check if we can shrink the heap
if (b == last)
{
// Update 'last' to the previous block or NULL if there's no previous block
last = b->prev;
if (last)
{
last->next = NULL;
}
else
{
first = NULL;
}
// Reduce the program break to release the memory
sbrk(0 - (b->size + BLOCK_SIZE));
}
}
int main()
{
int* a = (int*)malloc(1);
int* b = (int*)malloc(1);
int *a = (int *)malloc(sizeof(int));
int *b = (int *)malloc(sizeof(int));
*a = 5;
*b = 12;
@ -179,7 +274,7 @@ int main()
free(a);
free(b);
int* c = (int*)malloc(sizeof(int));
int *c = (int *)malloc(sizeof(int));
return 0;
}