#include // ATA IO Ports #define ATA_PRIMARY_DATA 0x1F0 #define ATA_PRIMARY_ERR_FEATURES 0x1F1 #define ATA_PRIMARY_SEC_COUNT 0x1F2 #define ATA_PRIMARY_LBA_LOW 0x1F3 #define ATA_PRIMARY_LBA_MID 0x1F4 #define ATA_PRIMARY_LBA_HIGH 0x1F5 #define ATA_PRIMARY_DRIVE_SEL 0x1F6 #define ATA_PRIMARY_COMM_STAT 0x1F7 // ATA Commands #define ATA_CMD_READ_PIO 0x20 #define ATA_CMD_WRITE_PIO 0x30 // ELF Ident indexes #define EI_NIDENT 16 // Program header types #define PT_NULL 0 #define PT_LOAD 1 // Disk sector size #define SECTOR_SIZE 512 // Kernel start LBA #define KERN_START_SECT 5 extern uint8_t read_buf[]; // ELF Header (32-bit) typedef struct { uint8_t e_ident[EI_NIDENT]; uint16_t e_type; uint16_t e_machine; uint32_t e_version; uint32_t e_entry; // Entry point uint32_t e_phoff; // Program header table offset uint32_t e_shoff; // Section header table offset uint32_t e_flags; uint16_t e_ehsize; uint16_t e_phentsize; uint16_t e_phnum; uint16_t e_shentsize; uint16_t e_shnum; uint16_t e_shstrndx; } __attribute__((packed)) Elf32_Ehdr; // Program Header (32-bit) typedef struct { uint32_t p_type; uint32_t p_offset; uint32_t p_vaddr; uint32_t p_paddr; uint32_t p_filesz; uint32_t p_memsz; uint32_t p_flags; uint32_t p_align; } __attribute__((packed)) Elf32_Phdr; static inline uint8_t inb(uint16_t port) { uint8_t ret; __asm__ volatile ("inb %1, %0" : "=a"(ret) : "Nd"(port)); return ret; } static inline void outb(uint16_t port, uint8_t val) { __asm__ volatile ("outb %0, %1" : : "a"(val), "Nd"(port)); } static inline uint16_t inw(uint16_t port) { uint16_t ret; __asm__ volatile ("inw %1, %0" : "=a"(ret) : "Nd"(port)); return ret; } static inline void ata_wait_bsy() { while (inb(ATA_PRIMARY_COMM_STAT) & 0x80); } static inline void ata_wait_drq() { while (!(inb(ATA_PRIMARY_COMM_STAT) & 0x08)); } static void ata_read_sector(void *addr, uint32_t lba) { ata_wait_bsy(); outb(ATA_PRIMARY_DRIVE_SEL, 0xE0 | ((lba >> 24) & 0x0F)); outb(ATA_PRIMARY_SEC_COUNT, 1); outb(ATA_PRIMARY_LBA_LOW, (uint8_t)lba); outb(ATA_PRIMARY_LBA_MID, (uint8_t)(lba >> 8)); outb(ATA_PRIMARY_LBA_HIGH, (uint8_t)(lba >> 16)); outb(ATA_PRIMARY_COMM_STAT, ATA_CMD_READ_PIO); uint16_t* ptr = (uint16_t*)addr; ata_wait_bsy(); ata_wait_drq(); for (int i = 0; i < 256; i++) { *ptr++ = inw(ATA_PRIMARY_DATA); } } static void load_segment(uint8_t *addr, uint32_t offset, uint32_t size) { uint32_t lba = KERN_START_SECT + offset / SECTOR_SIZE; uint32_t off = offset % 512; uint8_t data[512]; while (size > 0) { ata_read_sector(data, lba); uint32_t copy = 512 - off; if (copy > size) { copy = size; } for (uint32_t i = 0; i < copy; i++) { addr[i] = data[off + i]; } addr += copy; size -= copy; lba++; off = 0; } } // Load an ELF executable into memory. static int elf_load(const void *data) { const Elf32_Ehdr* header = (const Elf32_Ehdr*)data; const Elf32_Phdr* ph = (const Elf32_Phdr*)((uint8_t*)data + header->e_phoff); for (int i = 0; i < header->e_phnum; i++) { if (ph[i].p_type != PT_LOAD) continue; uint32_t offset = ph[i].p_offset; uint32_t vaddr = ph[i].p_vaddr; uint32_t filesz = ph[i].p_filesz; uint32_t memsz = ph[i].p_memsz; load_segment((uint8_t *)vaddr, offset, filesz); // Zero remaining BSS (if any) if (memsz > filesz) { uint8_t* bss_start = (uint8_t*)(vaddr + filesz); for (uint32_t j = 0; j < memsz - filesz; j++) { bss_start[j] = 0; } } } return header->e_entry; } static uint32_t total_headers_size(const Elf32_Ehdr *header) { uint32_t phend = header->e_phoff + header->e_phentsize*header->e_phnum; // Align to sector size uint32_t a = SECTOR_SIZE-1; return (phend + a) & ~a; } void *load_kernel(void) { // Read the first sector ata_read_sector(read_buf, KERN_START_SECT); const Elf32_Ehdr* header = (const Elf32_Ehdr*)read_buf; // Remaining data size, subtract the first 512B already read uint32_t rem = total_headers_size(header) - SECTOR_SIZE; // Read the rest if necessary if (rem) { uint8_t *dst = read_buf + SECTOR_SIZE; for (uint32_t i = 0; i < rem / SECTOR_SIZE; i++, dst += 512) { ata_read_sector(dst, KERN_START_SECT + i + 1); } } elf_load(read_buf); return (void *)header->e_entry; }