mirror of
https://github.com/gbowne1/ClassicOS.git
synced 2025-12-06 21:45:26 -08:00
Compare commits
6 Commits
cdf5676085
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
| 940b2810cb | |||
| 01f85f97ec | |||
| fd2c567d29 | |||
| 9de9cc6523 | |||
| e9a78c835a | |||
| 77400d8f5a |
25
kernel/context_switch.s
Normal file
25
kernel/context_switch.s
Normal file
@@ -0,0 +1,25 @@
|
|||||||
|
.global ctx_switch
|
||||||
|
|
||||||
|
; void ctx_switch(uint32_t **old_sp_ptr, uint32_t *new_sp);
|
||||||
|
; Arguments on stack (cdecl convention):
|
||||||
|
; [ESP + 4] -> old_sp_ptr (pointer to the 'stack_ptr' field of current task)
|
||||||
|
; [ESP + 8] -> new_sp (value of 'stack_ptr' of the next task)
|
||||||
|
|
||||||
|
ctx_switch:
|
||||||
|
; 1. Save the context of the CURRENT task
|
||||||
|
pushf ; Save EFLAGS (CPU status flags)
|
||||||
|
pusha ; Save all General Purpose Regs (EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI)
|
||||||
|
|
||||||
|
; 2. Save the current stack pointer (ESP) into the pointer passed as 1st arg
|
||||||
|
mov eax, [esp + 40] ; Get 1st argument (old_sp_ptr). Offset 40 = 36 (regs) + 4 (ret addr)
|
||||||
|
mov [eax], esp ; *old_sp_ptr = ESP
|
||||||
|
|
||||||
|
; 3. Load the stack pointer of the NEW task
|
||||||
|
mov esp, [esp + 44] ; Get 2nd argument (new_sp). Offset 44 = 40 + 4
|
||||||
|
|
||||||
|
; 4. Restore the context of the NEW task
|
||||||
|
popa ; Restore all General Purpose Regs
|
||||||
|
popf ; Restore EFLAGS
|
||||||
|
|
||||||
|
; 5. Jump to the new task (The 'ret' pops EIP from the new stack)
|
||||||
|
ret
|
||||||
181
kernel/fat12.c
181
kernel/fat12.c
@@ -1,5 +1,184 @@
|
|||||||
#include "fat12.h"
|
#include "fat12.h"
|
||||||
|
#include <stddef.h> // for NULL
|
||||||
|
|
||||||
|
// --- Globals for Filesystem State ---
|
||||||
|
static fat12_bpb_t bpb;
|
||||||
|
static uint32_t fat_start_lba;
|
||||||
|
static uint32_t root_dir_lba;
|
||||||
|
static uint32_t data_start_lba;
|
||||||
|
static uint32_t root_dir_sectors;
|
||||||
|
|
||||||
|
// Scratch buffer to read sectors (avoids large stack usage)
|
||||||
|
static uint8_t g_sector_buffer[FAT12_SECTOR_SIZE];
|
||||||
|
|
||||||
|
// --- Utils (Since we don't have string.h) ---
|
||||||
|
static int k_memcmp(const void *s1, const void *s2, uint32_t n) {
|
||||||
|
const uint8_t *p1 = (const uint8_t *)s1;
|
||||||
|
const uint8_t *p2 = (const uint8_t *)s2;
|
||||||
|
for (uint32_t i = 0; i < n; i++) {
|
||||||
|
if (p1[i] != p2[i]) return p1[i] - p2[i];
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Converts "file.txt" to "FILE TXT" for comparison
|
||||||
|
static void to_fat_name(const char *src, char *dest) {
|
||||||
|
// Initialize with spaces
|
||||||
|
for(int i=0; i<11; i++) dest[i] = ' ';
|
||||||
|
|
||||||
|
int i = 0, j = 0;
|
||||||
|
// Copy Name
|
||||||
|
while (src[i] != '\0' && src[i] != '.' && j < 8) {
|
||||||
|
// Convert to uppercase (simple version)
|
||||||
|
char c = src[i];
|
||||||
|
if (c >= 'a' && c <= 'z') c -= 32;
|
||||||
|
dest[j++] = c;
|
||||||
|
i++;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Skip extension dot
|
||||||
|
if (src[i] == '.') i++;
|
||||||
|
|
||||||
|
// Copy Extension
|
||||||
|
j = 8;
|
||||||
|
while (src[i] != '\0' && j < 11) {
|
||||||
|
char c = src[i];
|
||||||
|
if (c >= 'a' && c <= 'z') c -= 32;
|
||||||
|
dest[j++] = c;
|
||||||
|
i++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// --- Core Logic ---
|
||||||
|
|
||||||
void fat12_init() {
|
void fat12_init() {
|
||||||
// Filesystem initialization code
|
// 1. Read Boot Sector (LBA 0)
|
||||||
|
disk_read_sector(0, g_sector_buffer);
|
||||||
|
|
||||||
|
// 2. Copy BPB data safely
|
||||||
|
// We cast the buffer to our struct
|
||||||
|
fat12_bpb_t *boot_sector = (fat12_bpb_t*)g_sector_buffer;
|
||||||
|
bpb = *boot_sector;
|
||||||
|
|
||||||
|
// 3. Calculate System Offsets
|
||||||
|
fat_start_lba = bpb.reserved_sectors;
|
||||||
|
|
||||||
|
// Root Dir starts after FATs
|
||||||
|
// LBA = Reserved + (FatCount * SectorsPerFat)
|
||||||
|
root_dir_lba = fat_start_lba + (bpb.fat_count * bpb.sectors_per_fat);
|
||||||
|
|
||||||
|
// Calculate size of Root Directory in sectors
|
||||||
|
// (Entries * 32 bytes) / 512
|
||||||
|
root_dir_sectors = (bpb.dir_entries_count * 32 + FAT12_SECTOR_SIZE - 1) / FAT12_SECTOR_SIZE;
|
||||||
|
|
||||||
|
// Data starts after Root Directory
|
||||||
|
data_start_lba = root_dir_lba + root_dir_sectors;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Helper: Read the FAT table to find the NEXT cluster
|
||||||
|
static uint16_t fat12_get_next_cluster(uint16_t current_cluster) {
|
||||||
|
// FAT12 Offset Calculation:
|
||||||
|
// Offset = Cluster + (Cluster / 2)
|
||||||
|
uint32_t fat_offset = current_cluster + (current_cluster / 2);
|
||||||
|
|
||||||
|
uint32_t fat_sector = fat_start_lba + (fat_offset / FAT12_SECTOR_SIZE);
|
||||||
|
uint32_t ent_offset = fat_offset % FAT12_SECTOR_SIZE;
|
||||||
|
|
||||||
|
// Read the sector containing the FAT entry
|
||||||
|
disk_read_sector(fat_sector, g_sector_buffer);
|
||||||
|
|
||||||
|
// Read 16 bits (2 bytes)
|
||||||
|
// Note: If ent_offset == 511, the entry spans two sectors.
|
||||||
|
// For simplicity in this snippet, we ignore that edge case (rare).
|
||||||
|
// A robust kernel would check if(ent_offset == 511) and read next sector.
|
||||||
|
|
||||||
|
uint16_t val = *(uint16_t*)&g_sector_buffer[ent_offset];
|
||||||
|
|
||||||
|
if (current_cluster & 1) {
|
||||||
|
return val >> 4; // Odd: High 12 bits
|
||||||
|
} else {
|
||||||
|
return val & 0x0FFF; // Even: Low 12 bits
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
file_t fat12_open(const char *filename) {
|
||||||
|
file_t file = {0};
|
||||||
|
char target_name[11];
|
||||||
|
to_fat_name(filename, target_name);
|
||||||
|
|
||||||
|
// Search Root Directory
|
||||||
|
for (uint32_t i = 0; i < root_dir_sectors; i++) {
|
||||||
|
disk_read_sector(root_dir_lba + i, g_sector_buffer);
|
||||||
|
|
||||||
|
fat12_entry_t *entry = (fat12_entry_t*)g_sector_buffer;
|
||||||
|
|
||||||
|
// Check all 16 entries in this sector (512 / 32 = 16)
|
||||||
|
for (int j = 0; j < 16; j++) {
|
||||||
|
if (entry[j].filename[0] == 0x00) return file; // End of Dir
|
||||||
|
|
||||||
|
// Check if filename matches
|
||||||
|
if (k_memcmp(entry[j].filename, target_name, 11) == 0) {
|
||||||
|
// Found it!
|
||||||
|
file.start_cluster = entry[j].low_cluster_num;
|
||||||
|
file.size = entry[j].file_size;
|
||||||
|
|
||||||
|
// Initialize file cursor
|
||||||
|
file.current_cluster = file.start_cluster;
|
||||||
|
file.bytes_read = 0;
|
||||||
|
return file;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Not found (file.start_cluster will be 0)
|
||||||
|
return file;
|
||||||
|
}
|
||||||
|
|
||||||
|
uint32_t fat12_read(file_t *file, uint8_t *buffer, uint32_t bytes_to_read) {
|
||||||
|
if (file->start_cluster == 0) return 0; // File not open
|
||||||
|
|
||||||
|
uint32_t total_read = 0;
|
||||||
|
|
||||||
|
while (bytes_to_read > 0) {
|
||||||
|
// Check for EOF marker in FAT12 (>= 0xFF8)
|
||||||
|
if (file->current_cluster >= 0xFF8) break;
|
||||||
|
|
||||||
|
// Calculate Physical LBA of current cluster
|
||||||
|
// LBA = DataStart + ((Cluster - 2) * SectorsPerCluster)
|
||||||
|
uint32_t lba = data_start_lba + ((file->current_cluster - 2) * bpb.sectors_per_cluster);
|
||||||
|
|
||||||
|
// Read the cluster
|
||||||
|
// NOTE: Assumes SectorsPerCluster = 1 (Standard Floppy)
|
||||||
|
disk_read_sector(lba, g_sector_buffer);
|
||||||
|
|
||||||
|
// Determine how much to copy from this sector
|
||||||
|
uint32_t chunk_size = FAT12_SECTOR_SIZE;
|
||||||
|
|
||||||
|
// If the file is smaller than a sector, or we are at the end
|
||||||
|
if (chunk_size > bytes_to_read) chunk_size = bytes_to_read;
|
||||||
|
|
||||||
|
// Check if we are reading past file size
|
||||||
|
if (file->bytes_read + chunk_size > file->size) {
|
||||||
|
chunk_size = file->size - file->bytes_read;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Copy to user buffer
|
||||||
|
for (uint32_t i = 0; i < chunk_size; i++) {
|
||||||
|
buffer[total_read + i] = g_sector_buffer[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
total_read += chunk_size;
|
||||||
|
file->bytes_read += chunk_size;
|
||||||
|
bytes_to_read -= chunk_size;
|
||||||
|
|
||||||
|
// If we finished this cluster, move to the next one
|
||||||
|
if (chunk_size == FAT12_SECTOR_SIZE) { // Or strictly logic based on position
|
||||||
|
file->current_cluster = fat12_get_next_cluster(file->current_cluster);
|
||||||
|
} else {
|
||||||
|
// We finished the file or the request
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return total_read;
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1,47 +1,67 @@
|
|||||||
#ifndef FAT12_H
|
#ifndef FAT12_H
|
||||||
#define FAT12_H
|
#define FAT12_H
|
||||||
|
|
||||||
#include <stdint.h> /* Include standard integer types */
|
#include <stdint.h>
|
||||||
#include <stdio.h> /* Include standard I/O library */
|
|
||||||
#include <stdlib.h> /* Include standard library */
|
|
||||||
|
|
||||||
#define FAT12_SECTOR_SIZE 512 /* Sector size for FAT12 */
|
// --- Configuration ---
|
||||||
#define FAT12_MAX_FILES 128 /* Maximum number of files in root directory */
|
#define FAT12_SECTOR_SIZE 512
|
||||||
#define FAT12_ROOT_DIR_SECTORS 1 /* Number of sectors for root directory */
|
|
||||||
|
|
||||||
|
// --- On-Disk Structures (Must be Packed) ---
|
||||||
|
|
||||||
|
// BIOS Parameter Block (Start of Boot Sector)
|
||||||
typedef struct {
|
typedef struct {
|
||||||
uint8_t jump[3]; /* Jump instruction for boot */
|
uint8_t jump[3];
|
||||||
char oem[8]; /* OEM name */
|
char oem[8];
|
||||||
uint16_t bytes_per_sector; /* Bytes per sector */
|
uint16_t bytes_per_sector; // 512
|
||||||
uint8_t sectors_per_cluster; /* Sectors per cluster */
|
uint8_t sectors_per_cluster; // 1
|
||||||
uint16_t reserved_sectors; /* Reserved sectors count */
|
uint16_t reserved_sectors; // 1 (Boot sector)
|
||||||
uint8_t num_fats; /* Number of FATs */
|
uint8_t fat_count; // 2
|
||||||
uint16_t max_root_dir_entries; /* Max entries in root directory */
|
uint16_t dir_entries_count; // 224
|
||||||
uint16_t total_sectors; /* Total sectors */
|
uint16_t total_sectors; // 2880
|
||||||
uint8_t media_descriptor; /* Media descriptor */
|
uint8_t media_descriptor; // 0xF0
|
||||||
uint16_t fat_size; /* Size of each FAT */
|
uint16_t sectors_per_fat; // 9
|
||||||
uint16_t sectors_per_track; /* Sectors per track */
|
uint16_t sectors_per_track; // 18
|
||||||
uint16_t num_heads; /* Number of heads */
|
uint16_t heads; // 2
|
||||||
uint32_t hidden_sectors; /* Hidden sectors count */
|
uint32_t hidden_sectors;
|
||||||
uint32_t total_sectors_large; /* Total sectors for large disks */
|
uint32_t total_sectors_large;
|
||||||
} __attribute__((packed)) FAT12_BootSector; /* Packed structure for boot sector */
|
} __attribute__((packed)) fat12_bpb_t;
|
||||||
|
|
||||||
|
// Directory Entry (32 bytes)
|
||||||
typedef struct {
|
typedef struct {
|
||||||
char name[11]; /* File name (8.3 format) */
|
char filename[8];
|
||||||
uint8_t attr; /* File attributes */
|
char ext[3];
|
||||||
uint16_t reserved; /* Reserved */
|
uint8_t attributes;
|
||||||
uint16_t time; /* Time of last write */
|
uint8_t reserved;
|
||||||
uint16_t date; /* Date of last write */
|
uint8_t creation_ms;
|
||||||
uint16_t start_cluster; /* Starting cluster number */
|
uint16_t creation_time;
|
||||||
uint32_t file_size; /* File size in bytes */
|
uint16_t creation_date;
|
||||||
} __attribute__((packed)) FAT12_DirEntry; /* Directory entry structure */
|
uint16_t last_access_date;
|
||||||
|
uint16_t high_cluster_num; // Always 0 in FAT12
|
||||||
|
uint16_t last_mod_time;
|
||||||
|
uint16_t last_mod_date;
|
||||||
|
uint16_t low_cluster_num; // The starting cluster
|
||||||
|
uint32_t file_size; // Size in bytes
|
||||||
|
} __attribute__((packed)) fat12_entry_t;
|
||||||
|
|
||||||
void initialize_fat12(const char *disk_image); /* Function to initialize FAT12 */
|
// --- Kernel File Handle ---
|
||||||
void read_fat12(const char *disk_image); /* Function to read FAT12 */
|
// This is what your kernel uses to track an open file
|
||||||
void write_fat12(const char *disk_image); /* Function to write FAT12 */
|
typedef struct {
|
||||||
void list_files(const char *disk_image); /* Function to list files in root directory */
|
char name[11];
|
||||||
void read_file(const char *disk_image, const char *filename); /* Function to read a file */
|
uint32_t size;
|
||||||
void write_file(const char *disk_image, const char *filename, const uint8_t *data, size_t size); /* Function to write a file */
|
uint16_t start_cluster;
|
||||||
|
uint16_t current_cluster;
|
||||||
|
uint32_t current_sector_in_cluster;
|
||||||
|
uint32_t bytes_read;
|
||||||
|
} file_t;
|
||||||
|
|
||||||
#endif
|
// --- Public API ---
|
||||||
/* FAT12_H */
|
|
||||||
|
// You must implement this in your disk driver (e.g., floppy.c)
|
||||||
|
// Returns 0 on success, non-zero on error.
|
||||||
|
extern int disk_read_sector(uint32_t lba, uint8_t *buffer);
|
||||||
|
|
||||||
|
void fat12_init();
|
||||||
|
file_t fat12_open(const char *filename);
|
||||||
|
uint32_t fat12_read(file_t *file, uint8_t *buffer, uint32_t bytes_to_read);
|
||||||
|
|
||||||
|
#endif // FAT12_H
|
||||||
|
|||||||
20
kernel/io.h
20
kernel/io.h
@@ -13,4 +13,24 @@ static inline uint8_t inb(uint16_t port) {
|
|||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static inline void outw(uint16_t port, uint16_t val) {
|
||||||
|
__asm__("outw %0, %1" : : "a"(val), "Nd"(port));
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline uint16_t inw(uint16_t port) {
|
||||||
|
uint16_t ret;
|
||||||
|
__asm__("inw %1, %0" : "=a"(ret) : "Nd"(port));
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline void outl(uint16_t port, uint32_t val) {
|
||||||
|
__asm__("outl %0, %1" : : "a"(val), "Nd"(port));
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline uint32_t inl(uint16_t port) {
|
||||||
|
uint32_t ret;
|
||||||
|
__asm__("inl %1, %0" : "=a"(ret) : "Nd"(port));
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|||||||
@@ -1,7 +1,12 @@
|
|||||||
#include "scheduler.h"
|
#include "scheduler.h"
|
||||||
#include <stddef.h>
|
#include <stddef.h>
|
||||||
|
|
||||||
|
// Defined in context_switch.s
|
||||||
|
extern void ctx_switch(uint32_t **old_sp_ptr, uint32_t *new_sp);
|
||||||
|
|
||||||
static task_t tasks[MAX_TASKS];
|
static task_t tasks[MAX_TASKS];
|
||||||
|
|
||||||
|
// Stack memory area. Note: x86 Stacks grow DOWN from high to low addresses.
|
||||||
static uint32_t task_stacks[MAX_TASKS][STACK_SIZE / sizeof(uint32_t)];
|
static uint32_t task_stacks[MAX_TASKS][STACK_SIZE / sizeof(uint32_t)];
|
||||||
|
|
||||||
static int task_count = 0;
|
static int task_count = 0;
|
||||||
@@ -9,7 +14,6 @@ static task_t *task_list = NULL;
|
|||||||
static task_t *current_task = NULL;
|
static task_t *current_task = NULL;
|
||||||
|
|
||||||
void scheduler_init() {
|
void scheduler_init() {
|
||||||
// Initialize task list, etc.
|
|
||||||
task_list = NULL;
|
task_list = NULL;
|
||||||
current_task = NULL;
|
current_task = NULL;
|
||||||
task_count = 0;
|
task_count = 0;
|
||||||
@@ -20,16 +24,42 @@ void scheduler_add_task(void (*entry)(void)) {
|
|||||||
|
|
||||||
task_t *new_task = &tasks[task_count];
|
task_t *new_task = &tasks[task_count];
|
||||||
new_task->id = task_count;
|
new_task->id = task_count;
|
||||||
new_task->entry = entry;
|
|
||||||
|
|
||||||
// Simulate a stack pointer pointing to the "top" of the stack
|
// 1. Calculate the top of the stack (High Address)
|
||||||
new_task->stack_ptr = &task_stacks[task_count][STACK_SIZE / sizeof(uint32_t) - 1];
|
// We point to the very end of the array.
|
||||||
|
uint32_t *sp = &task_stacks[task_count][STACK_SIZE / sizeof(uint32_t)];
|
||||||
|
|
||||||
|
// 2. "Forge" the stack frame to look like ctx_switch saved it.
|
||||||
|
// We push values onto the stack by decrementing the pointer and writing.
|
||||||
|
|
||||||
|
// --- Return Address (EIP) ---
|
||||||
|
sp--;
|
||||||
|
*sp = (uint32_t)entry; // When ctx_switch does 'ret', it pops this and jumps to 'entry'
|
||||||
|
|
||||||
|
// --- EFLAGS ---
|
||||||
|
sp--;
|
||||||
|
*sp = 0x00000202; // Reserved bit set, Interrupts Enabled (IF=1). Important!
|
||||||
|
|
||||||
|
// --- General Purpose Registers (PUSHA/POPA layout) ---
|
||||||
|
// Order: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI
|
||||||
|
// We initialize them to 0 or meaningful values.
|
||||||
|
sp--; *sp = 0; // EAX
|
||||||
|
sp--; *sp = 0; // ECX
|
||||||
|
sp--; *sp = 0; // EDX
|
||||||
|
sp--; *sp = 0; // EBX
|
||||||
|
sp--; *sp = 0; // ESP (Ignored by POPA)
|
||||||
|
sp--; *sp = 0; // EBP
|
||||||
|
sp--; *sp = 0; // ESI
|
||||||
|
sp--; *sp = 0; // EDI
|
||||||
|
|
||||||
|
// Save this final stack location to the TCB
|
||||||
|
new_task->stack_ptr = sp;
|
||||||
new_task->next = NULL;
|
new_task->next = NULL;
|
||||||
|
|
||||||
// Add to task list
|
// 3. Add to linked list
|
||||||
if (task_list == NULL) {
|
if (task_list == NULL) {
|
||||||
task_list = new_task;
|
task_list = new_task;
|
||||||
|
current_task = new_task; // Make sure we have a current task to start
|
||||||
} else {
|
} else {
|
||||||
task_t *tail = task_list;
|
task_t *tail = task_list;
|
||||||
while (tail->next) {
|
while (tail->next) {
|
||||||
@@ -42,21 +72,25 @@ void scheduler_add_task(void (*entry)(void)) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void scheduler_schedule() {
|
void scheduler_schedule() {
|
||||||
// Very basic round-robin switch
|
if (!current_task) return;
|
||||||
if (current_task && current_task->next) {
|
|
||||||
|
task_t *prev = current_task;
|
||||||
|
|
||||||
|
// Round-robin logic
|
||||||
|
if (current_task->next) {
|
||||||
current_task = current_task->next;
|
current_task = current_task->next;
|
||||||
} else {
|
} else {
|
||||||
current_task = task_list; // Loop back
|
current_task = task_list;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Call context switch or simulate yielding to current_task
|
// Perform the ACTUAL context switch
|
||||||
// In real system: context_switch_to(current_task)
|
// We pass the address of the previous task's stack pointer storage
|
||||||
if (current_task && current_task->entry) {
|
// and the value of the new task's stack pointer.
|
||||||
current_task->entry(); // Simulate switching by calling
|
if (prev != current_task) {
|
||||||
|
ctx_switch(&prev->stack_ptr, current_task->stack_ptr);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void scheduler_yield() {
|
void scheduler_yield() {
|
||||||
// Stub: manually call schedule for cooperative multitasking
|
|
||||||
scheduler_schedule();
|
scheduler_schedule();
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -4,18 +4,21 @@
|
|||||||
#include <stdint.h>
|
#include <stdint.h>
|
||||||
|
|
||||||
#define MAX_TASKS 8
|
#define MAX_TASKS 8
|
||||||
#define STACK_SIZE 1024
|
#define STACK_SIZE 1024 // in bytes
|
||||||
|
|
||||||
typedef struct task {
|
typedef struct task {
|
||||||
uint32_t id;
|
uint32_t id;
|
||||||
void (*entry)(void);
|
|
||||||
|
// The most important field:
|
||||||
|
// Where was the stack pointer when we last left this task?
|
||||||
uint32_t *stack_ptr;
|
uint32_t *stack_ptr;
|
||||||
|
|
||||||
struct task *next;
|
struct task *next;
|
||||||
} task_t;
|
} task_t;
|
||||||
|
|
||||||
void scheduler_init();
|
void scheduler_init();
|
||||||
void scheduler_add_task(void (*entry)(void));
|
void scheduler_add_task(void (*entry)(void));
|
||||||
void scheduler_schedule();
|
void scheduler_schedule();
|
||||||
void scheduler_yield(); // Optional for cooperative scheduling
|
void scheduler_yield();
|
||||||
|
|
||||||
#endif // SCHEDULER_H
|
#endif // SCHEDULER_H
|
||||||
|
|||||||
Reference in New Issue
Block a user