17 Commits

Author SHA1 Message Date
9eae2e1005 Merge pull request #84 from shoshta73/RWXPerms
[fix] LOAD segment with RWX permissions
2025-12-30 17:19:16 -08:00
Borna Šoštarić
bd4236ad9b fix RWX perms warnings in link step 2025-12-31 01:39:18 +01:00
5292808934 Merge pull request #83 from vmttmv/main
Fix BL disk read status polls
2025-12-30 16:13:42 -08:00
vmttmv
09c48c2f50 fix stage2.asm: disk reads wait for BSY 2025-12-30 05:08:54 +02:00
caea475daf Merge pull request #79 from shoshta73/klibc
Initial implementation of klibc
2025-12-27 11:14:45 -08:00
Borna Šoštarić
f30be3ddd5 initial implementation of klibc
fix linker error about ctx_switch
2025-12-27 19:44:54 +01:00
d83e247bbd Merge pull request #76 from shoshta73/configure-script
Configure script
2025-12-19 15:22:02 -08:00
Borna Šoštarić
a1a6fd2aa9 lessen indirection in the makefile 2025-12-19 23:46:03 +01:00
Borna Šoštarić
66f9056406 update readme 2025-12-19 23:44:00 +01:00
Borna Šoštarić
45acbb5c04 generate .build.env as part of configure script 2025-12-19 23:41:32 +01:00
Borna Šoštarić
649a227e41 add configure script for setting up cross compilation tools 2025-12-19 22:47:34 +01:00
940b2810cb Update io.h
adding the missing io
2025-11-20 10:07:01 -08:00
01f85f97ec Update fat12.h
better header for FAT12 kernel driver
2025-11-19 09:31:22 -08:00
fd2c567d29 Update fat12.c
implementation of kernel space fat12 kernel driver for fat12
2025-11-19 09:29:04 -08:00
9de9cc6523 Update scheduler.h 2025-11-19 08:44:15 -08:00
e9a78c835a Create context_switch.s
new context_switch.s for x86 IA32.
must confirm nasm.
2025-11-19 08:43:11 -08:00
77400d8f5a Update scheduler.c
old scheduler might not work on x86 IA-32 32 bit
2025-11-19 08:41:03 -08:00
24 changed files with 763 additions and 210 deletions

4
.gitignore vendored
View File

@@ -1 +1,5 @@
.build.env
build
cross
.cache/
compile_commands.json

View File

@@ -1,10 +1,12 @@
AS = nasm
ASFLAGS = -f elf32 -g -F dwarf
CC = gcc
LD = ld
CC = i386-elf-gcc
LD = i386-elf-ld
QEMU= qemu-system-i386
OBJCOPY = i386-elf-objcopy
BUILD_DIR = build
CROSS_DIR = cross
DISK_IMG = $(BUILD_DIR)/disk.img
STAGE2_SIZE = 2048
@@ -13,31 +15,37 @@ KERNEL_ASM_SRC = $(wildcard kernel/*.asm)
KERNEL_OBJ = $(patsubst kernel/%.c, $(BUILD_DIR)/%.o, $(KERNEL_C_SRC))
KERNEL_OBJ += $(patsubst kernel/%.asm, $(BUILD_DIR)/asm_%.o, $(KERNEL_ASM_SRC))
KLIBC_SRC = $(wildcard klibc/src/*.c)
KLIBC_OBJ = $(patsubst klibc/src/%.c, $(BUILD_DIR)/klibc/%.o, $(KLIBC_SRC))
all: $(DISK_IMG)
.PHONY: stage1 stage2 kernel run gdb clean
stage1: $(BUILD_DIR)
$(AS) $(ASFLAGS) -o $(BUILD_DIR)/$@.o bootloader/$@.asm
$(LD) -Ttext=0x7c00 -melf_i386 -o $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.o
objcopy -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin
$(OBJCOPY) -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin
# NOTE: Stage2 final size should be checked against `$(STAGE2_SIZE)` by the build system to avoid an overflow.
# Alternatively, convey the final stage2 size through other means to stage1.
stage2: $(BUILD_DIR)
$(AS) $(ASFLAGS) -o $(BUILD_DIR)/stage2.o bootloader/stage2.asm
$(CC) -std=c11 -ffreestanding -nostdlib -fno-stack-protector -m32 -g -c -o $(BUILD_DIR)/stage2_load.o bootloader/stage2_load.c
$(CC) -std=c11 -ffreestanding -nostdlib -nostdinc -fno-stack-protector -m32 -Iklibc/include -g -c -o $(BUILD_DIR)/stage2_load.o bootloader/stage2_load.c
$(LD) -Tbootloader/stage2.ld -melf_i386 -o $(BUILD_DIR)/$@.elf $(BUILD_DIR)/stage2.o $(BUILD_DIR)/stage2_load.o
objcopy -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin
$(OBJCOPY) -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin
truncate -s $(STAGE2_SIZE) $(BUILD_DIR)/$@.bin
$(BUILD_DIR)/asm_%.o: kernel/%.asm
$(AS) $(ASFLAGS) -o $@ $<
$(BUILD_DIR)/%.o: kernel/%.c
$(CC) -std=c11 -ffreestanding -nostdlib -fno-stack-protector -m32 -g -c -o $@ $<
$(CC) -std=c11 -ffreestanding -nostdlib -nostdinc -fno-stack-protector -m32 -Iklibc/include -g -c -o $@ $<
kernel: $(KERNEL_OBJ) | $(BUILD_DIR)
$(LD) -melf_i386 -Tkernel/linker.ld -o $(BUILD_DIR)/kernel.elf $(KERNEL_OBJ)
$(BUILD_DIR)/klibc/%.o: klibc/src/%.c
$(CC) -std=c11 -ffreestanding -nostdlib -nostdinc -fno-stack-protector -m32 -Iklibc/include -g -c -o $@ $<
kernel: $(KERNEL_OBJ) | $(BUILD_DIR) $(KLIBC_OBJ)
$(LD) -melf_i386 -Tkernel/linker.ld -o $(BUILD_DIR)/kernel.elf $(KERNEL_OBJ) $(KLIBC_OBJ)
$(DISK_IMG): stage1 stage2 kernel
dd if=$(BUILD_DIR)/stage1.bin of=$@
@@ -47,6 +55,7 @@ $(DISK_IMG): stage1 stage2 kernel
$(BUILD_DIR):
mkdir -p $@
mkdir -p $(BUILD_DIR)/klibc
run:
qemu-system-i386 -s -S $(DISK_IMG)
@@ -56,3 +65,9 @@ gdb:
clean:
rm -rf $(BUILD_DIR)
clean-cross:
rm -rf $(CROSS_DIR)
rm -rf .build.env
clean-all: clean clean-cross

View File

@@ -35,6 +35,7 @@ Youll need the following tools installed:
- `qemu-system-i386`
Optional:
- `gdb`
- `vncviewer` (TigerVNC or similar)
@@ -42,13 +43,27 @@ Optional:
## 🛠️ Building ClassicOS
Clone and build:
Clone repository:
```bash
```sh
git clone https://github.com/gbowne1/ClassicOS.git
cd ClassicOS
make
```
build kernel
for %f in (*.c) do gcc -m32 -O0 -Wall -Wextra -Werror -pedantic -ffreestanding -nostdlib -fno-pic -fno-stack-protector -fno-pie -march=i386 -mtune=i386 -c "%f" -o "%f.o"
Run `configure` script to build a cross-compiler toolchain for `i386-elf`:
```sh
./configure
```
Source the `.build.env` file to add the cross-compiler toolchain to your PATH:
```sh
source .build.env
```
Build the kernel:
```sh
make
```

View File

@@ -40,6 +40,13 @@ ata_lba_read:
push edx
push edi
; Wait BSY=0 before proceeding to write the regs
.wait_rdy:
mov edx, 0x1F7
in al, dx
test al, 0x80
jnz .wait_rdy
mov eax, [ebp+8] ; arg #1 = LBA
mov cl, [ebp+12] ; arg #2 = # of sectors
mov edi, [ebp+16] ; arg #3 = buffer address
@@ -76,19 +83,21 @@ ata_lba_read:
mov bl, cl ; Save # of sectors in BL
.wait_drq:
.wait_rdy2:
mov edx, 0x1F7
.do_wait_drq:
.do_wait_rdy2:
in al, dx
test al, 8 ; the sector buffer requires servicing.
jz .do_wait_drq ; keep polling until the sector buffer is ready.
test al, 0x80 ; BSY?
jnz .do_wait_rdy2
test al, 0x8 ; DRQ?
jz .do_wait_rdy2
mov edx, 0x1F0 ; Data port, in and out
mov ecx, 256
rep insw ; in to [RDI]
dec bl ; are we...
jnz .wait_drq ; ...done?
jnz .wait_rdy2 ; ...done?
pop edi
pop edx

169
configure vendored Executable file
View File

@@ -0,0 +1,169 @@
#!/usr/bin/env bash
set -euo pipefail
# Configuration
TARGET="i386-elf"
BINUTILS_VERSION="2.45"
GCC_VERSION="15.2.0"
# Paths
SCRIPT_PATH="$(realpath "${BASH_SOURCE[0]}")"
SCRIPT_DIR="$(dirname "$SCRIPT_PATH")"
PREFIX="$SCRIPT_DIR/cross"
SRC_DIR="$PREFIX/src"
BINUTILS_SRC="$SRC_DIR/binutils-$BINUTILS_VERSION"
BINUTILS_BUILD="$PREFIX/build-binutils"
GCC_SRC="$SRC_DIR/gcc-$GCC_VERSION"
GCC_BUILD="$PREFIX/build-gcc"
# Flags
DEBUG=0
HELP=0
# Parse arguments
for arg in "$@"; do
case "$arg" in
-h|--help)
HELP=1
;;
-d|--debug)
DEBUG=1
;;
*)
echo "Unknown option: $arg"
echo "Use -h or --help for usage information"
exit 1
;;
esac
done
# Show help
if [[ "$HELP" -eq 1 ]]; then
cat << EOF
Usage: $0 [OPTIONS]
Build a cross-compiler toolchain for $TARGET.
OPTIONS:
-h, --help Show this help message
-d, --debug Enable debug mode (set -x)
This script will:
1. Download binutils $BINUTILS_VERSION and GCC $GCC_VERSION
2. Build and install them to: $PREFIX
EOF
exit 0
fi
# Enable debug mode
if [[ "$DEBUG" -eq 1 ]]; then
set -x
fi
# Print configuration
cat << EOF
=== Build Configuration ===
Target : $TARGET
Prefix : $PREFIX
Binutils : $BINUTILS_VERSION
GCC : $GCC_VERSION
===========================
EOF
# Create directory structure
echo "Setting up directories..."
mkdir -p "$SRC_DIR"
# Download sources
cd "$SRC_DIR"
if [[ ! -d "$BINUTILS_SRC" ]]; then
echo "Downloading binutils $BINUTILS_VERSION..."
wget "https://ftp.gnu.org/gnu/binutils/binutils-$BINUTILS_VERSION.tar.gz"
echo "Extracting binutils..."
tar xf "binutils-$BINUTILS_VERSION.tar.gz"
rm "binutils-$BINUTILS_VERSION.tar.gz"
else
echo "Binutils source already exists, skipping download"
fi
if [[ ! -d "$GCC_SRC" ]]; then
echo "Downloading GCC $GCC_VERSION..."
wget "https://ftp.gnu.org/gnu/gcc/gcc-$GCC_VERSION/gcc-$GCC_VERSION.tar.gz"
echo "Extracting GCC..."
tar xf "gcc-$GCC_VERSION.tar.gz"
rm "gcc-$GCC_VERSION.tar.gz"
else
echo "GCC source already exists, skipping download"
fi
# Download GCC prerequisites
if [[ ! -d "$GCC_SRC/gmp" ]]; then
echo "Downloading GCC prerequisites..."
cd "$GCC_SRC"
./contrib/download_prerequisites
cd "$SRC_DIR"
else
echo "GCC prerequisites already downloaded, skipping"
fi
# Build binutils
if [[ ! -f "$PREFIX/bin/$TARGET-ld" ]]; then
echo "Building binutils..."
mkdir -p "$BINUTILS_BUILD"
cd "$BINUTILS_BUILD"
"$BINUTILS_SRC/configure" \
--target="$TARGET" \
--prefix="$PREFIX" \
--with-sysroot \
--disable-nls \
--disable-werror
make -j"$(nproc)"
make install
else
echo "Binutils already installed, skipping build"
fi
# Build GCC
if [[ ! -f "$PREFIX/bin/$TARGET-gcc" ]]; then
echo "Building GCC..."
mkdir -p "$GCC_BUILD"
cd "$GCC_BUILD"
"$GCC_SRC/configure" \
--target="$TARGET" \
--prefix="$PREFIX" \
--disable-nls \
--enable-languages=c \
--without-headers
make all-gcc -j"$(nproc)"
make all-target-libgcc -j"$(nproc)"
make install-gcc
make install-target-libgcc
else
echo "GCC already installed, skipping build"
fi
cd "$SCRIPT_DIR"
# Generate .build.env file
cat > .build.env << EOF
# Generated by configure on $(date)
# Source this file to add the cross-compiler toolchain to your PATH
export PATH="$PREFIX/bin:\$PATH"
EOF
echo ""
echo "=== Build Complete ==="
echo "Toolchain installed to: $PREFIX"
echo ""
echo "To use the toolchain, run:"
echo " source .build.env"
echo "======================"

25
kernel/context_switch.asm Normal file
View File

@@ -0,0 +1,25 @@
global ctx_switch
; void ctx_switch(uint32_t **old_sp_ptr, uint32_t *new_sp);
; Arguments on stack (cdecl convention):
; [ESP + 4] -> old_sp_ptr (pointer to the 'stack_ptr' field of current task)
; [ESP + 8] -> new_sp (value of 'stack_ptr' of the next task)
ctx_switch:
; 1. Save the context of the CURRENT task
pushf ; Save EFLAGS (CPU status flags)
pusha ; Save all General Purpose Regs (EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI)
; 2. Save the current stack pointer (ESP) into the pointer passed as 1st arg
mov eax, [esp + 40] ; Get 1st argument (old_sp_ptr). Offset 40 = 36 (regs) + 4 (ret addr)
mov [eax], esp ; *old_sp_ptr = ESP
; 3. Load the stack pointer of the NEW task
mov esp, [esp + 44] ; Get 2nd argument (new_sp). Offset 44 = 40 + 4
; 4. Restore the context of the NEW task
popa ; Restore all General Purpose Regs
popf ; Restore EFLAGS
; 5. Jump to the new task (The 'ret' pops EIP from the new stack)
ret

View File

@@ -1,5 +1,184 @@
#include "fat12.h"
#include <stddef.h> // for NULL
// --- Globals for Filesystem State ---
static fat12_bpb_t bpb;
static uint32_t fat_start_lba;
static uint32_t root_dir_lba;
static uint32_t data_start_lba;
static uint32_t root_dir_sectors;
// Scratch buffer to read sectors (avoids large stack usage)
static uint8_t g_sector_buffer[FAT12_SECTOR_SIZE];
// --- Utils (Since we don't have string.h) ---
static int k_memcmp(const void *s1, const void *s2, uint32_t n) {
const uint8_t *p1 = (const uint8_t *)s1;
const uint8_t *p2 = (const uint8_t *)s2;
for (uint32_t i = 0; i < n; i++) {
if (p1[i] != p2[i]) return p1[i] - p2[i];
}
return 0;
}
// Converts "file.txt" to "FILE TXT" for comparison
static void to_fat_name(const char *src, char *dest) {
// Initialize with spaces
for(int i=0; i<11; i++) dest[i] = ' ';
int i = 0, j = 0;
// Copy Name
while (src[i] != '\0' && src[i] != '.' && j < 8) {
// Convert to uppercase (simple version)
char c = src[i];
if (c >= 'a' && c <= 'z') c -= 32;
dest[j++] = c;
i++;
}
// Skip extension dot
if (src[i] == '.') i++;
// Copy Extension
j = 8;
while (src[i] != '\0' && j < 11) {
char c = src[i];
if (c >= 'a' && c <= 'z') c -= 32;
dest[j++] = c;
i++;
}
}
// --- Core Logic ---
void fat12_init() {
// Filesystem initialization code
// 1. Read Boot Sector (LBA 0)
disk_read_sector(0, g_sector_buffer);
// 2. Copy BPB data safely
// We cast the buffer to our struct
fat12_bpb_t *boot_sector = (fat12_bpb_t*)g_sector_buffer;
bpb = *boot_sector;
// 3. Calculate System Offsets
fat_start_lba = bpb.reserved_sectors;
// Root Dir starts after FATs
// LBA = Reserved + (FatCount * SectorsPerFat)
root_dir_lba = fat_start_lba + (bpb.fat_count * bpb.sectors_per_fat);
// Calculate size of Root Directory in sectors
// (Entries * 32 bytes) / 512
root_dir_sectors = (bpb.dir_entries_count * 32 + FAT12_SECTOR_SIZE - 1) / FAT12_SECTOR_SIZE;
// Data starts after Root Directory
data_start_lba = root_dir_lba + root_dir_sectors;
}
// Helper: Read the FAT table to find the NEXT cluster
static uint16_t fat12_get_next_cluster(uint16_t current_cluster) {
// FAT12 Offset Calculation:
// Offset = Cluster + (Cluster / 2)
uint32_t fat_offset = current_cluster + (current_cluster / 2);
uint32_t fat_sector = fat_start_lba + (fat_offset / FAT12_SECTOR_SIZE);
uint32_t ent_offset = fat_offset % FAT12_SECTOR_SIZE;
// Read the sector containing the FAT entry
disk_read_sector(fat_sector, g_sector_buffer);
// Read 16 bits (2 bytes)
// Note: If ent_offset == 511, the entry spans two sectors.
// For simplicity in this snippet, we ignore that edge case (rare).
// A robust kernel would check if(ent_offset == 511) and read next sector.
uint16_t val = *(uint16_t*)&g_sector_buffer[ent_offset];
if (current_cluster & 1) {
return val >> 4; // Odd: High 12 bits
} else {
return val & 0x0FFF; // Even: Low 12 bits
}
}
file_t fat12_open(const char *filename) {
file_t file = {0};
char target_name[11];
to_fat_name(filename, target_name);
// Search Root Directory
for (uint32_t i = 0; i < root_dir_sectors; i++) {
disk_read_sector(root_dir_lba + i, g_sector_buffer);
fat12_entry_t *entry = (fat12_entry_t*)g_sector_buffer;
// Check all 16 entries in this sector (512 / 32 = 16)
for (int j = 0; j < 16; j++) {
if (entry[j].filename[0] == 0x00) return file; // End of Dir
// Check if filename matches
if (k_memcmp(entry[j].filename, target_name, 11) == 0) {
// Found it!
file.start_cluster = entry[j].low_cluster_num;
file.size = entry[j].file_size;
// Initialize file cursor
file.current_cluster = file.start_cluster;
file.bytes_read = 0;
return file;
}
}
}
// Not found (file.start_cluster will be 0)
return file;
}
uint32_t fat12_read(file_t *file, uint8_t *buffer, uint32_t bytes_to_read) {
if (file->start_cluster == 0) return 0; // File not open
uint32_t total_read = 0;
while (bytes_to_read > 0) {
// Check for EOF marker in FAT12 (>= 0xFF8)
if (file->current_cluster >= 0xFF8) break;
// Calculate Physical LBA of current cluster
// LBA = DataStart + ((Cluster - 2) * SectorsPerCluster)
uint32_t lba = data_start_lba + ((file->current_cluster - 2) * bpb.sectors_per_cluster);
// Read the cluster
// NOTE: Assumes SectorsPerCluster = 1 (Standard Floppy)
disk_read_sector(lba, g_sector_buffer);
// Determine how much to copy from this sector
uint32_t chunk_size = FAT12_SECTOR_SIZE;
// If the file is smaller than a sector, or we are at the end
if (chunk_size > bytes_to_read) chunk_size = bytes_to_read;
// Check if we are reading past file size
if (file->bytes_read + chunk_size > file->size) {
chunk_size = file->size - file->bytes_read;
}
// Copy to user buffer
for (uint32_t i = 0; i < chunk_size; i++) {
buffer[total_read + i] = g_sector_buffer[i];
}
total_read += chunk_size;
file->bytes_read += chunk_size;
bytes_to_read -= chunk_size;
// If we finished this cluster, move to the next one
if (chunk_size == FAT12_SECTOR_SIZE) { // Or strictly logic based on position
file->current_cluster = fat12_get_next_cluster(file->current_cluster);
} else {
// We finished the file or the request
break;
}
}
return total_read;
}

View File

@@ -1,47 +1,67 @@
#ifndef FAT12_H
#define FAT12_H
#include <stdint.h> /* Include standard integer types */
#include <stdio.h> /* Include standard I/O library */
#include <stdlib.h> /* Include standard library */
#include <stdint.h>
#define FAT12_SECTOR_SIZE 512 /* Sector size for FAT12 */
#define FAT12_MAX_FILES 128 /* Maximum number of files in root directory */
#define FAT12_ROOT_DIR_SECTORS 1 /* Number of sectors for root directory */
// --- Configuration ---
#define FAT12_SECTOR_SIZE 512
// --- On-Disk Structures (Must be Packed) ---
// BIOS Parameter Block (Start of Boot Sector)
typedef struct {
uint8_t jump[3]; /* Jump instruction for boot */
char oem[8]; /* OEM name */
uint16_t bytes_per_sector; /* Bytes per sector */
uint8_t sectors_per_cluster; /* Sectors per cluster */
uint16_t reserved_sectors; /* Reserved sectors count */
uint8_t num_fats; /* Number of FATs */
uint16_t max_root_dir_entries; /* Max entries in root directory */
uint16_t total_sectors; /* Total sectors */
uint8_t media_descriptor; /* Media descriptor */
uint16_t fat_size; /* Size of each FAT */
uint16_t sectors_per_track; /* Sectors per track */
uint16_t num_heads; /* Number of heads */
uint32_t hidden_sectors; /* Hidden sectors count */
uint32_t total_sectors_large; /* Total sectors for large disks */
} __attribute__((packed)) FAT12_BootSector; /* Packed structure for boot sector */
uint8_t jump[3];
char oem[8];
uint16_t bytes_per_sector; // 512
uint8_t sectors_per_cluster; // 1
uint16_t reserved_sectors; // 1 (Boot sector)
uint8_t fat_count; // 2
uint16_t dir_entries_count; // 224
uint16_t total_sectors; // 2880
uint8_t media_descriptor; // 0xF0
uint16_t sectors_per_fat; // 9
uint16_t sectors_per_track; // 18
uint16_t heads; // 2
uint32_t hidden_sectors;
uint32_t total_sectors_large;
} __attribute__((packed)) fat12_bpb_t;
// Directory Entry (32 bytes)
typedef struct {
char name[11]; /* File name (8.3 format) */
uint8_t attr; /* File attributes */
uint16_t reserved; /* Reserved */
uint16_t time; /* Time of last write */
uint16_t date; /* Date of last write */
uint16_t start_cluster; /* Starting cluster number */
uint32_t file_size; /* File size in bytes */
} __attribute__((packed)) FAT12_DirEntry; /* Directory entry structure */
char filename[8];
char ext[3];
uint8_t attributes;
uint8_t reserved;
uint8_t creation_ms;
uint16_t creation_time;
uint16_t creation_date;
uint16_t last_access_date;
uint16_t high_cluster_num; // Always 0 in FAT12
uint16_t last_mod_time;
uint16_t last_mod_date;
uint16_t low_cluster_num; // The starting cluster
uint32_t file_size; // Size in bytes
} __attribute__((packed)) fat12_entry_t;
void initialize_fat12(const char *disk_image); /* Function to initialize FAT12 */
void read_fat12(const char *disk_image); /* Function to read FAT12 */
void write_fat12(const char *disk_image); /* Function to write FAT12 */
void list_files(const char *disk_image); /* Function to list files in root directory */
void read_file(const char *disk_image, const char *filename); /* Function to read a file */
void write_file(const char *disk_image, const char *filename, const uint8_t *data, size_t size); /* Function to write a file */
// --- Kernel File Handle ---
// This is what your kernel uses to track an open file
typedef struct {
char name[11];
uint32_t size;
uint16_t start_cluster;
uint16_t current_cluster;
uint32_t current_sector_in_cluster;
uint32_t bytes_read;
} file_t;
#endif
/* FAT12_H */
// --- Public API ---
// You must implement this in your disk driver (e.g., floppy.c)
// Returns 0 on success, non-zero on error.
extern int disk_read_sector(uint32_t lba, uint8_t *buffer);
void fat12_init();
file_t fat12_open(const char *filename);
uint32_t fat12_read(file_t *file, uint8_t *buffer, uint32_t bytes_to_read);
#endif // FAT12_H

View File

@@ -13,4 +13,24 @@ static inline uint8_t inb(uint16_t port) {
return ret;
}
static inline void outw(uint16_t port, uint16_t val) {
__asm__("outw %0, %1" : : "a"(val), "Nd"(port));
}
static inline uint16_t inw(uint16_t port) {
uint16_t ret;
__asm__("inw %1, %0" : "=a"(ret) : "Nd"(port));
return ret;
}
static inline void outl(uint16_t port, uint32_t val) {
__asm__("outl %0, %1" : : "a"(val), "Nd"(port));
}
static inline uint32_t inl(uint16_t port) {
uint32_t ret;
__asm__("inl %1, %0" : "=a"(ret) : "Nd"(port));
return ret;
}
#endif

View File

@@ -1,18 +1,30 @@
ENTRY(kmain)
PHDRS {
text PT_LOAD FLAGS(5); /* Read + Execute */
rodata PT_LOAD FLAGS(4); /* Read only */
data PT_LOAD FLAGS(6); /* Read + Write */
}
SECTIONS {
. = 1M;
.text : {
*(.text*)
}
} :text
.rodata : {
*(.rodata*)
} :rodata
.data : {
*(.data*)
} :data
.rodata : { *(.rodata*) }
.data : { *(.data*) }
.bss : {
*(.bss*)
*(COMMON)
}
} :data
.stack (NOLOAD) : {
. = ALIGN(4);

View File

@@ -15,124 +15,3 @@ static inline void byte_copy_backward(uint8_t *dst, const uint8_t *src, size_t n
while (n--) *--dst = *--src;
}
/* --------------------------------------------------------------------- *
* memcpy no overlap allowed (behaviour undefined if overlap)
* --------------------------------------------------------------------- */
void *memcpy(void *restrict dst, const void *restrict src, size_t n)
{
uint8_t *d = (uint8_t *)dst;
const uint8_t *s = (const uint8_t *)src;
#if defined(MEMORY_OPTIMIZED)
/* Align destination to 4-byte boundary */
size_t align = (uintptr_t)d & 3U;
if (align) {
size_t head = 4 - align;
if (head > n) head = n;
byte_copy_forward(d, s, head);
d += head; s += head; n -= head;
}
/* 32-bit word copy safe because we already aligned dst */
{
uint32_t *d32 = (uint32_t *)d;
const uint32_t *s32 = (const uint32_t *)s;
size_t words = n / 4;
while (words--) *d32++ = *s32++;
d = (uint8_t *)d32;
s = (const uint8_t *)s32;
n &= 3;
}
#endif
byte_copy_forward(d, s, n);
return dst;
}
/* --------------------------------------------------------------------- *
* memmove handles overlapping regions correctly
* --------------------------------------------------------------------- */
void *memmove(void *dst, const void *src, size_t n)
{
uint8_t *d = (uint8_t *)dst;
const uint8_t *s = (const uint8_t *)src;
if (n == 0 || dst == src)
return dst;
if (d < s) { /* copy forward */
#if defined(MEMORY_OPTIMIZED)
/* Same fast path as memcpy when no overlap */
size_t align = (uintptr_t)d & 3U;
if (align) {
size_t head = 4 - align;
if (head > n) head = n;
byte_copy_forward(d, s, head);
d += head; s += head; n -= head;
}
{
uint32_t *d32 = (uint32_t *)d;
const uint32_t *s32 = (const uint32_t *)s;
size_t words = n / 4;
while (words--) *d32++ = *s32++;
d = (uint8_t *)d32;
s = (const uint8_t *)s32;
n &= 3;
}
#endif
byte_copy_forward(d, s, n);
} else { /* copy backward */
byte_copy_backward(d, s, n);
}
return dst;
}
/* --------------------------------------------------------------------- *
* memcmp lexicographical compare
* --------------------------------------------------------------------- */
int memcmp(const void *s1, const void *s2, size_t n)
{
const uint8_t *a = (const uint8_t *)s1;
const uint8_t *b = (const uint8_t *)s2;
#if defined(MEMORY_OPTIMIZED)
/* Align to 4-byte boundary */
size_t align = (uintptr_t)a & 3U;
if (align && align == ((uintptr_t)b & 3U)) {
size_t head = 4 - align;
if (head > n) head = n;
while (head--) {
int diff = *a++ - *b++;
if (diff) return diff;
}
n -= head;
}
{
const uint32_t *a32 = (const uint32_t *)a;
const uint32_t *b32 = (const uint32_t *)b;
size_t words = n / 4;
while (words--) {
uint32_t va = *a32++, vb = *b32++;
if (va != vb) {
/* byte-wise fallback for the differing word */
const uint8_t *pa = (const uint8_t *)(a32 - 1);
const uint8_t *pb = (const uint8_t *)(b32 - 1);
for (int i = 0; i < 4; ++i) {
int diff = pa[i] - pb[i];
if (diff) return diff;
}
}
}
a = (const uint8_t *)a32;
b = (const uint8_t *)b32;
n &= 3;
}
#endif
while (n--) {
int diff = *a++ - *b++;
if (diff) return diff;
}
return 0;
}

View File

@@ -1,7 +1,12 @@
#include "scheduler.h"
#include <stddef.h>
// Defined in context_switch.s
extern void ctx_switch(uint32_t **old_sp_ptr, uint32_t *new_sp);
static task_t tasks[MAX_TASKS];
// Stack memory area. Note: x86 Stacks grow DOWN from high to low addresses.
static uint32_t task_stacks[MAX_TASKS][STACK_SIZE / sizeof(uint32_t)];
static int task_count = 0;
@@ -9,7 +14,6 @@ static task_t *task_list = NULL;
static task_t *current_task = NULL;
void scheduler_init() {
// Initialize task list, etc.
task_list = NULL;
current_task = NULL;
task_count = 0;
@@ -20,16 +24,42 @@ void scheduler_add_task(void (*entry)(void)) {
task_t *new_task = &tasks[task_count];
new_task->id = task_count;
new_task->entry = entry;
// Simulate a stack pointer pointing to the "top" of the stack
new_task->stack_ptr = &task_stacks[task_count][STACK_SIZE / sizeof(uint32_t) - 1];
// 1. Calculate the top of the stack (High Address)
// We point to the very end of the array.
uint32_t *sp = &task_stacks[task_count][STACK_SIZE / sizeof(uint32_t)];
// 2. "Forge" the stack frame to look like ctx_switch saved it.
// We push values onto the stack by decrementing the pointer and writing.
// --- Return Address (EIP) ---
sp--;
*sp = (uint32_t)entry; // When ctx_switch does 'ret', it pops this and jumps to 'entry'
// --- EFLAGS ---
sp--;
*sp = 0x00000202; // Reserved bit set, Interrupts Enabled (IF=1). Important!
// --- General Purpose Registers (PUSHA/POPA layout) ---
// Order: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI
// We initialize them to 0 or meaningful values.
sp--; *sp = 0; // EAX
sp--; *sp = 0; // ECX
sp--; *sp = 0; // EDX
sp--; *sp = 0; // EBX
sp--; *sp = 0; // ESP (Ignored by POPA)
sp--; *sp = 0; // EBP
sp--; *sp = 0; // ESI
sp--; *sp = 0; // EDI
// Save this final stack location to the TCB
new_task->stack_ptr = sp;
new_task->next = NULL;
// Add to task list
// 3. Add to linked list
if (task_list == NULL) {
task_list = new_task;
current_task = new_task; // Make sure we have a current task to start
} else {
task_t *tail = task_list;
while (tail->next) {
@@ -42,21 +72,25 @@ void scheduler_add_task(void (*entry)(void)) {
}
void scheduler_schedule() {
// Very basic round-robin switch
if (current_task && current_task->next) {
if (!current_task) return;
task_t *prev = current_task;
// Round-robin logic
if (current_task->next) {
current_task = current_task->next;
} else {
current_task = task_list; // Loop back
current_task = task_list;
}
// Call context switch or simulate yielding to current_task
// In real system: context_switch_to(current_task)
if (current_task && current_task->entry) {
current_task->entry(); // Simulate switching by calling
// Perform the ACTUAL context switch
// We pass the address of the previous task's stack pointer storage
// and the value of the new task's stack pointer.
if (prev != current_task) {
ctx_switch(&prev->stack_ptr, current_task->stack_ptr);
}
}
void scheduler_yield() {
// Stub: manually call schedule for cooperative multitasking
scheduler_schedule();
}

View File

@@ -4,18 +4,21 @@
#include <stdint.h>
#define MAX_TASKS 8
#define STACK_SIZE 1024
#define STACK_SIZE 1024 // in bytes
typedef struct task {
uint32_t id;
void (*entry)(void);
// The most important field:
// Where was the stack pointer when we last left this task?
uint32_t *stack_ptr;
struct task *next;
} task_t;
void scheduler_init();
void scheduler_add_task(void (*entry)(void));
void scheduler_schedule();
void scheduler_yield(); // Optional for cooperative scheduling
void scheduler_yield();
#endif // SCHEDULER_H

View File

@@ -27,7 +27,6 @@ typedef enum { false = 0, true = 1 } bool;
// ----------------------------
// OS subsystem types
// ----------------------------
typedef uint32_t size_t;
typedef int32_t ssize_t;
typedef uint32_t phys_addr_t; // Physical address

View File

@@ -76,10 +76,3 @@ char* utoa(unsigned int value, char* str, int base) {
reverse(str, i);
return str;
}
void *memset(void *dest, int value, size_t len) {
unsigned char *ptr = (unsigned char *)dest;
while (len-- > 0)
*ptr++ = (unsigned char)value;
return dest;
}

View File

@@ -1,6 +1,8 @@
#ifndef UTILS_H
#define UTILS_H
#include <stddef.h>
#include "types.h"
// Convert integer to string (base is typically 10, 16, etc.)

14
klibc/include/stdarg.h Normal file
View File

@@ -0,0 +1,14 @@
#ifndef CLASSICOS_KLIBC_STDARG_H
#define CLASSICOS_KLIBC_STDARG_H
typedef __builtin_va_list va_list;
#ifndef va_start
#define va_start(ap, param) __builtin_va_start(ap, param)
#endif
#define va_end(ap) __builtin_va_end(ap)
#define va_arg(ap, type) __builtin_va_arg(ap, type)
#define va_copy(dest, src) __builtin_va_copy(dest, src)
#endif // CLASSICOS_KLIBC_STDARG_H

6
klibc/include/stdbool.h Normal file
View File

@@ -0,0 +1,6 @@
#ifndef CLASSICOS_KLIBC_STDBOOL_H
#define CLASSICOS_KLIBC_STDBOOL_H
typedef enum { false = 0, true = 1 } bool;
#endif // CLASSICOS_KLIBC_STDBOOL_H

10
klibc/include/stddef.h Normal file
View File

@@ -0,0 +1,10 @@
#ifndef CLASSICOS_KLIBC_STDDEF_H
#define CLASSICOS_KLIBC_STDDEF_H
typedef __SIZE_TYPE__ size_t;
typedef __PTRDIFF_TYPE__ ptrdiff_t;
#undef NULL
#define NULL ((void*)0)
#endif // CLASSICOS_KLIBC_STDDEF_H

16
klibc/include/stdint.h Normal file
View File

@@ -0,0 +1,16 @@
#ifndef CLASSICOS_KLIBC_STDINT_H
#define CLASSICOS_KLIBC_STDINT_H
typedef signed char int8_t;
typedef short int int16_t;
typedef int int32_t;
typedef long long int int64_t;
typedef unsigned char uint8_t;
typedef unsigned short int uint16_t;
typedef unsigned int uint32_t;
typedef unsigned long long int uint64_t;
typedef unsigned int uintptr_t;
#endif // CLASSICOS_KLIBC_STDINT_H

4
klibc/include/stdio.h Normal file
View File

@@ -0,0 +1,4 @@
#ifndef CLASSICOS_KLIBC_STDIO_H
#define CLASSICOS_KLIBC_STDIO_H
#endif // CLASSICOS_KLIBC_STDIO_H

4
klibc/include/stdlib.h Normal file
View File

@@ -0,0 +1,4 @@
#ifndef CLASSICOS_KLIBC_STDLIB_H
#define CLASSICOS_KLIBC_STDLIB_H
#endif // CLASSICOS_KLIBC_STDLIB_H

14
klibc/include/string.h Normal file
View File

@@ -0,0 +1,14 @@
#ifndef CLASSICOS_KLIBC_STRING_H
#define CLASSICOS_KLIBC_STRING_H
#include <stddef.h>
extern int memcmp(const void* s1, const void* s2, size_t n);
extern void* memmove(void* dst, const void* src, size_t n);
extern void* memcpy(void* dst, const void* src, size_t n);
extern void* memset(void* dst, int c, size_t n);
extern size_t strlen(const char* s);
extern int strcmp(const char* s1, const char* s2);
#endif // CLASSICOS_KLIBC_STRING_H

107
klibc/src/string.c Normal file
View File

@@ -0,0 +1,107 @@
#include <string.h>
int memcmp(const void* s1, const void* s2, size_t n) {
const unsigned char* c1 = s1;
const unsigned char* c2 = s2;
int d = 0;
while (n--) {
d = (int)*c1++ - (int)*c2++;
if (d) break;
}
return d;
}
void* memmove(void* dst, const void* src, size_t n) {
const char* p = src;
char* q = dst;
#if defined(__i386__) || defined(__x86_64__)
if (q < p) {
__asm__ volatile("cld; rep; movsb" : "+c"(n), "+S"(p), "+D"(q));
} else {
p += (n - 1);
q += (n - 1);
__asm__ volatile("std; rep; movsb; cld" : "+c"(n), "+S"(p), "+D"(q));
}
#else
if (q < p) {
while (n--) {
*q++ = *p++;
}
} else {
p += n;
q += n;
while (n--) {
*--q = *--p;
}
}
#endif
return dst;
}
void* memcpy(void* dst, const void* src, size_t n) {
const char* p = src;
char* q = dst;
#if defined(__i386__)
size_t nl = n >> 2;
__asm__ volatile("cld ; rep ; movsl ; movl %3,%0 ; rep ; movsb"
: "+c"(nl), "+S"(p), "+D"(q)
: "r"(n & 3));
#elif defined(__x86_64__)
size_t nq = n >> 3;
__asm__ volatile("cld ; rep ; movsq ; movl %3,%%ecx ; rep ; movsb"
: "+c"(nq), "+S"(p), "+D"(q)
: "r"((uint32_t)(n & 7)));
#else
while (n--) {
*q++ = *p++;
}
#endif
return dst;
}
void* memset(void* dst, int c, size_t n) {
char* q = dst;
#if defined(__i386__)
size_t nl = n >> 2;
__asm__ volatile("cld ; rep ; stosl ; movl %3,%0 ; rep ; stosb"
: "+c"(nl), "+D"(q)
: "a"((unsigned char)c * 0x01010101U), "r"(n & 3));
#elif defined(__x86_64__)
size_t nq = n >> 3;
__asm__ volatile("cld ; rep ; stosq ; movl %3,%%ecx ; rep ; stosb"
: "+c"(nq), "+D"(q)
: "a"((unsigned char)c * 0x0101010101010101U),
"r"((uint32_t)n & 7));
#else
while (n--) {
*q++ = c;
}
#endif
return dst;
}
size_t strlen(const char* s) {
const char* ss = s;
while (*ss) ss++;
return ss - s;
}
int strcmp(const char* s1, const char* s2) {
const unsigned char* c1 = (const unsigned char*)s1;
const unsigned char* c2 = (const unsigned char*)s2;
unsigned char ch;
int d = 0;
while (1) {
d = (int)(ch = *c1++) - (int)*c2++;
if (d || !ch) break;
}
return d;
}