61 Commits

Author SHA1 Message Date
23cb50a73f Create ata.h
implement the base ata pio mode driver so that the filesystems like fat16, fat32 work. This is the header for that. It will need a iso9660 driver for cdrom etc optical media
2026-01-18 17:44:18 -08:00
b6c158957e Merge pull request #95 from shoshta73/qol
[misc] add editorconfig, clangd config and clang-format config
2026-01-18 16:46:05 -08:00
Borna Šoštarić
a7b0d1152f add rules for formatting consecutives 2026-01-18 10:54:18 +01:00
Borna Šoštarić
e38f1aa2ee add .clang-format 2026-01-18 10:40:34 +01:00
Borna Šoštarić
78d5e9a7ab added editorconfig file 2026-01-18 10:18:23 +01:00
Borna Šoštarić
daead5ee57 add clangd config file 2026-01-18 10:15:38 +01:00
Borna Šoštarić
4fb81d2e57 add compile_commands.json genereation 2026-01-18 10:10:39 +01:00
19f7c7b213 Merge pull request #93 from vmttmv/fix/91-header-cleanup
Remove types.c/.h, use klibc headers, amend stdbool.h, reimplement cpuid()
2026-01-13 07:40:03 -08:00
bc9d84a93e Merge branch 'main' into fix/91-header-cleanup 2026-01-13 07:39:46 -08:00
9066ceaddb Merge pull request #94 from vmttmv/fix/92-paging
Fix PDE/PTE definitions, header cleanup
2026-01-13 07:29:27 -08:00
vmttmv
3b67e81ed0 Fix PDE/PTE definitions, header cleanup
- Fixes PDE/PTE definitions in kernel/paging.h
- removes memset declaration from kernel/utils.h, uses klibc string.h as
needed
2026-01-12 04:02:15 +02:00
vmttmv
841892398a Remove types.c/.h, use klibc headers, amend stdbool.h, reimplement cpuid() 2026-01-12 02:43:37 +02:00
86608ef48c Merge pull request #90 from gbowne1/gbowne1-patch-2
Fix extern declaration for disk_read_sector function
2026-01-10 21:31:34 -08:00
785c8920d8 Merge pull request #86 from gbowne1/gbowne1-cpuidfix-1
IImplement CPUID support check and CPU info printing
2026-01-09 11:59:52 -08:00
c0e7ab6be0 Fix k_memcmp return logic and add disk_read_sector
Refactor k_memcmp to return correct difference and add disk_read_sector function.
2026-01-08 21:10:35 -08:00
f78bc27f35 Fix extern declaration for disk_read_sector function 2026-01-08 21:03:10 -08:00
507b4f5511 Merge pull request #89 from vmttmv/fix/bl-bounds
Establish well-defined read buffers for bl, implement error printing
2026-01-07 21:00:00 -08:00
Borna Šoštarić
12046ce96b fix vga clear section in on_error 2026-01-08 05:20:42 +01:00
vmttmv
a9b8ac7066 Establish well-defined read buffers for bl, implement error printing 2026-01-07 02:33:46 +02:00
d6ab8c91f8 Merge pull request #87 from vmttmv/fix/bl-nonaligned-reads
Fix non-aligned disk reads in bootloader
2026-01-05 17:45:37 -08:00
vmttmv
35ebd5fd72 Fix non-aligned disk reads in bootloader 2026-01-06 00:44:55 +02:00
10d3761be1 Enhance cpu.h with Intel model definitions and struct
Added Intel model definitions and CPU info structure.
2026-01-05 00:46:14 -08:00
cc2e967a4d Implement CPUID support check and CPU info printing
Added functions to check CPUID support and print CPU details.
2026-01-05 00:42:05 -08:00
9eae2e1005 Merge pull request #84 from shoshta73/RWXPerms
[fix] LOAD segment with RWX permissions
2025-12-30 17:19:16 -08:00
Borna Šoštarić
bd4236ad9b fix RWX perms warnings in link step 2025-12-31 01:39:18 +01:00
5292808934 Merge pull request #83 from vmttmv/main
Fix BL disk read status polls
2025-12-30 16:13:42 -08:00
vmttmv
09c48c2f50 fix stage2.asm: disk reads wait for BSY 2025-12-30 05:08:54 +02:00
caea475daf Merge pull request #79 from shoshta73/klibc
Initial implementation of klibc
2025-12-27 11:14:45 -08:00
Borna Šoštarić
f30be3ddd5 initial implementation of klibc
fix linker error about ctx_switch
2025-12-27 19:44:54 +01:00
d83e247bbd Merge pull request #76 from shoshta73/configure-script
Configure script
2025-12-19 15:22:02 -08:00
Borna Šoštarić
a1a6fd2aa9 lessen indirection in the makefile 2025-12-19 23:46:03 +01:00
Borna Šoštarić
66f9056406 update readme 2025-12-19 23:44:00 +01:00
Borna Šoštarić
45acbb5c04 generate .build.env as part of configure script 2025-12-19 23:41:32 +01:00
Borna Šoštarić
649a227e41 add configure script for setting up cross compilation tools 2025-12-19 22:47:34 +01:00
940b2810cb Update io.h
adding the missing io
2025-11-20 10:07:01 -08:00
01f85f97ec Update fat12.h
better header for FAT12 kernel driver
2025-11-19 09:31:22 -08:00
fd2c567d29 Update fat12.c
implementation of kernel space fat12 kernel driver for fat12
2025-11-19 09:29:04 -08:00
9de9cc6523 Update scheduler.h 2025-11-19 08:44:15 -08:00
e9a78c835a Create context_switch.s
new context_switch.s for x86 IA32.
must confirm nasm.
2025-11-19 08:43:11 -08:00
77400d8f5a Update scheduler.c
old scheduler might not work on x86 IA-32 32 bit
2025-11-19 08:41:03 -08:00
cdf5676085 Merge pull request #70 from vmttmv/main
Kernel build fixes
2025-11-18 18:11:18 -08:00
vmttmv
8743fa9e24 Multiple changes:
- Makefile: fix linker script path
- irq.c: `irqN()` stubs
- irq.h: fix missing header
- isr.h/isr.c extern `interrupt_handlers`
- utils.c: remove duplicate `memcmp`
2025-11-19 03:32:06 +02:00
3036ee3dfd Delete bootloader/linker.ld
delete linker.ld as moved to kernel space
2025-11-14 14:18:54 -08:00
d5906d72de Move linker.ld
Move to kernel
2025-11-14 14:17:27 -08:00
2ab0efdee1 Delete bootloader/Makefile
Remove Makefile in bootloader
2025-11-14 14:15:51 -08:00
0e011c1682 Update README.md 2025-11-13 14:45:56 -08:00
eccf9d7d7c Merge pull request #69 from vmttmv/bootloader
BL implementation
2025-11-13 14:36:09 -08:00
vmttmv
62fe09d80d multiple changes: BL1/BL2/kernel separation (build system, etc.) BL2 implementation. BL documentation 2025-11-13 23:35:54 +02:00
f1b0670a15 Update kmain.c
Adding isr stuff
2025-11-10 05:59:22 -08:00
48fdb348ca Update irq.h
add implementation for irq handles to header
2025-11-10 05:49:36 -08:00
6dbd08c808 Update irq.c
Implement the irq handles
2025-11-10 05:48:02 -08:00
9ac3a2b862 Update terminal.c
Fixed minor issue with terminal
2025-11-10 05:19:25 -08:00
95f0507c24 Update keyboard.c
some issues with keyboard buffer fixed and interrupt greater than 32 would cause EOI to get sent to PIC 2x
2025-11-10 05:09:30 -08:00
70539f72b8 Update Makefile
This Makefile is for i686-elf cross compilation  only
2025-11-10 03:42:17 -08:00
1b046776e0 Update boot1.asm
remove duplicate print
2025-11-10 03:29:17 -08:00
2609f52dd6 Update paging.c
Fixed page table entry so it doesnt clobber kernel
2025-11-10 03:12:34 -08:00
f2e75c5142 Update kmalloc.c
Safer 1MB heap. Original value would have caused a heap overflow
2025-11-10 02:51:56 -08:00
056d3eb374 Update framebuffer.h
Added the stub graphics framebuffer stub
2025-11-04 01:21:35 -08:00
98f0f58ce4 Add stub code for the graphics franebuffer 2025-11-04 01:13:36 -08:00
7d9d0aeee3 Create memory.c
This is the implementation for memory.c memory.h pair to house the 
memset. memcmp, memcpy, memmove etc careful as there are now duplicates in utils implementation
2025-11-02 17:39:31 -08:00
8e5dff4271 Add memory.h with memcpy and memmove declarations
Define memory management functions and include guards.

Adding a home for memory functions memset, memcpy, memcmp, memmove

This is the header
2025-11-02 17:32:53 -08:00
54 changed files with 1689 additions and 565 deletions

24
.clang-format Normal file
View File

@@ -0,0 +1,24 @@
BasedOnStyle: Google
IndentWidth: 4
TabWidth: 4
UseTab: Never
ColumnLimit: 80
DerivePointerAlignment: false
PointerAlignment: Right
ReferenceAlignment: Right
AlignConsecutiveMacros: Consecutive
AlignTrailingComments:
Kind: Always
OverEmptyLines: 0
IncludeBlocks: Regroup
IncludeCategories:
# Std headers
- Regex: '<[[:alnum:]_.]+>'
Priority: 2
# Other headers
- Regex: '.*'
Priority: 1

6
.clangd Normal file
View File

@@ -0,0 +1,6 @@
CompileFlags:
CompilationDatabase: build
Diagnostics:
UnusedIncludes: Strict
MissingIncludes: Strict

12
.editorconfig Normal file
View File

@@ -0,0 +1,12 @@
root = true
[*]
charset = utf-8
end_of_line = lf
insert_final_newline = true
trim_trailing_whitespace = true
[Makefile]
indent_style = tab
indent_size = 8
tab_width = 8

4
.gitignore vendored
View File

@@ -1 +1,5 @@
.build.env
build
cross
.cache/
compile_commands.json

103
Makefile
View File

@@ -1,64 +1,77 @@
AS = nasm
CC = gcc
CFLAGS = -std=c11 -m32 -ffreestanding -c -fno-stack-protector -fno-pie
LD = ld
QEMU = qemu-system-i386
IMG_SIZE = 1440k
ASFLAGS = -f elf32 -g -F dwarf
CC = i386-elf-gcc
LD = i386-elf-ld
QEMU= qemu-system-i386
OBJCOPY = i386-elf-objcopy
BUILD_DIR = build
BOOT_SRC = bootloader/boot.asm
BOOT_OBJ = $(BUILD_DIR)/boot.o
BOOT_ELF = $(BUILD_DIR)/boot.elf
BOOT_IMG = $(BUILD_DIR)/boot.img
CROSS_DIR = cross
DISK_IMG = $(BUILD_DIR)/disk.img
STAGE2_SIZE = 2048
KERNEL_C_SRC = $(wildcard kernel/*.c)
KERNEL_ASM_SRC = $(wildcard kernel/*.asm)
KERNEL_OBJ = $(patsubst kernel/%.c, $(BUILD_DIR)/%.o, $(KERNEL_C_SRC))
KERNEL_OBJ += $(patsubst kernel/%.asm, $(BUILD_DIR)/asm_%.o, $(KERNEL_ASM_SRC))
KERNEL_OBJ += $(BUILD_DIR)/boot1.o
KERNEL_ELF = $(BUILD_DIR)/kernel.elf
KERNEL_BIN = $(BUILD_DIR)/kernel.bin
DISK_IMG = $(BUILD_DIR)/disk.img
KLIBC_SRC = $(wildcard klibc/src/*.c)
KLIBC_OBJ = $(patsubst klibc/src/%.c, $(BUILD_DIR)/klibc/%.o, $(KLIBC_SRC))
all: $(BOOT_IMG) $(KERNEL_BIN) $(DISK_IMG)
.PHONY: all stage1 stage2 kernel compile-commands $(BUILD_DIR)/compile_commands.json run gdb clean clean-cross clean-all
all: $(DISK_IMG)
stage1: $(BUILD_DIR)
$(AS) $(ASFLAGS) -o $(BUILD_DIR)/$@.o bootloader/$@.asm
$(LD) -Ttext=0x7c00 -melf_i386 -o $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.o
$(OBJCOPY) -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin
# NOTE: Stage2 final size should be checked against `$(STAGE2_SIZE)` by the build system to avoid an overflow.
# Alternatively, convey the final stage2 size through other means to stage1.
stage2: $(BUILD_DIR)
$(AS) $(ASFLAGS) -o $(BUILD_DIR)/stage2.o bootloader/stage2.asm
$(CC) -std=c11 -ffreestanding -nostdlib -nostdinc -fno-stack-protector -m32 -Iklibc/include -g -c -o $(BUILD_DIR)/stage2_load.o bootloader/stage2_load.c
$(LD) -Tbootloader/stage2.ld -melf_i386 -o $(BUILD_DIR)/$@.elf $(BUILD_DIR)/stage2.o $(BUILD_DIR)/stage2_load.o
$(OBJCOPY) -O binary $(BUILD_DIR)/$@.elf $(BUILD_DIR)/$@.bin
truncate -s $(STAGE2_SIZE) $(BUILD_DIR)/$@.bin
$(BUILD_DIR)/asm_%.o: kernel/%.asm
$(AS) $(ASFLAGS) -o $@ $<
$(BUILD_DIR)/%.o: kernel/%.c
$(CC) -std=c11 -ffreestanding -nostdlib -nostdinc -fno-stack-protector -m32 -Iklibc/include -g -c -o $@ $<
$(BUILD_DIR)/klibc/%.o: klibc/src/%.c
$(CC) -std=c11 -ffreestanding -nostdlib -nostdinc -fno-stack-protector -m32 -Iklibc/include -g -c -o $@ $<
kernel: $(KERNEL_OBJ) | $(BUILD_DIR) $(KLIBC_OBJ)
$(LD) -melf_i386 -Tkernel/linker.ld -o $(BUILD_DIR)/kernel.elf $(KERNEL_OBJ) $(KLIBC_OBJ)
$(DISK_IMG): stage1 stage2 kernel
dd if=$(BUILD_DIR)/stage1.bin of=$@
dd if=$(BUILD_DIR)/stage2.bin of=$@ oflag=append conv=notrunc
dd if=$(BUILD_DIR)/kernel.elf of=$@ oflag=append conv=notrunc
truncate -s 1M $@
$(BUILD_DIR):
mkdir -p $@
mkdir -p $(BUILD_DIR)/klibc
$(BOOT_OBJ): $(BOOT_SRC) | $(BUILD_DIR)
$(AS) -f elf32 -g -F dwarf -o $@ $<
compile-commands: $(BUILD_DIR)/compile_commands.json
$(BUILD_DIR)/compile_commands.json: $(BUILD_DIR)
bear --output $@ -- make -B
$(BOOT_ELF): $(BOOT_OBJ)
$(LD) -Ttext=0x7c00 -melf_i386 -o $@ $<
run:
qemu-system-i386 -s -S $(DISK_IMG)
$(BOOT_IMG): $(BOOT_ELF)
objcopy -O binary $< $@
truncate -s $(IMG_SIZE) $@
$(BUILD_DIR)/boot1.o: bootloader/boot1.asm
$(AS) -f elf32 -o $@ $<
$(BUILD_DIR)/asm_%.o: kernel/%.asm
$(AS) -f elf32 -o $@ $<
$(BUILD_DIR)/%.o: kernel/%.c
$(CC) $(CFLAGS) $< -o $@
$(KERNEL_BIN): $(KERNEL_OBJ) | $(BUILD_DIR)
$(LD) -melf_i386 --oformat binary -T bootloader/linker.ld -o $@ $(KERNEL_OBJ)
$(DISK_IMG): $(BOOT_IMG) $(KERNEL_BIN)
dd if=$(BOOT_IMG) of=$@ bs=512 seek=4
dd if=$(KERNEL_BIN) of=$@ bs=512 seek=200
run: $(DISK_IMG)
$(QEMU) -drive file=$<,format=raw,if=floppy
.PHONY: stage1 clean
stage1: $(BOOT_IMG)
gdb:
gdb -x gdb.txt
clean:
rm -rf $(BUILD_DIR)
clean-cross:
rm -rf $(CROSS_DIR)
rm -rf .build.env
clean-all: clean clean-cross

View File

@@ -35,6 +35,7 @@ Youll need the following tools installed:
- `qemu-system-i386`
Optional:
- `gdb`
- `vncviewer` (TigerVNC or similar)
@@ -42,13 +43,27 @@ Optional:
## 🛠️ Building ClassicOS
Clone and build:
Clone repository:
```bash
```sh
git clone https://github.com/gbowne1/ClassicOS.git
cd ClassicOS
make
```
build kernel
for %f in (*.c) do gcc -m32 -O0 -Wall -Wextra -Werror -pedantic -ffreestanding -nostdlib -fno-pic -fno-stack-protector -fno-pie -march=i386 -mtune=i386 -c "%f" -o "%f.o"
Run `configure` script to build a cross-compiler toolchain for `i386-elf`:
```sh
./configure
```
Source the `.build.env` file to add the cross-compiler toolchain to your PATH:
```sh
source .build.env
```
Build the kernel:
```sh
make
```

View File

27
bootloader/README.md Normal file
View File

@@ -0,0 +1,27 @@
# ClassicOS 2-stage bootloader
Bootloader documentation for ClassicOS
## Disk image organization:
```
[ 512 B ] [ 2048 B ] [ Unspecified ]
Stage 1 Stage 2 Kernel
```
## Stage 1 (`stage1.asm`)
Responsible for loading the second stage using BIOS routines, and switching to protected mode.
- Queries CHS parameters from BIOS
- Loads the second stage bootloader (2048 B) to `0x7c00`
- Sets up a GDT with descriptor entries for code and data both covering the whole 32-bit address space
- Enables A20
- Set CR0.PE (enable protected mode) and jump to stage 2
## Stage 2 (`stage2.asm, stage2_load.c`)
- Set up segment registers
- Load the kernel ELF header
- Parse the program headers, and load all `PT_LOAD` segments from disk
- Jump to the kernel entry

View File

@@ -1,203 +0,0 @@
; ==============================================================================
; boot1.asm - Second Stage Bootloader (Fixed Real Mode Transition)
; ==============================================================================
[BITS 32]
global _start
extern kmain
_start:
; Set up segments
mov ax, 0x10
mov ds, ax
mov es, ax
mov fs, ax
mov gs, ax
mov ss, ax
; Stack (must be identity-mapped)
mov esp, 0x90000
; CPU Feature Detection: check CPUID support
pushfd ; Save flags
pop eax
mov ecx, eax
xor eax, 1 << 21 ; Flip ID bit
push eax
popfd
pushfd
pop eax
xor eax, ecx
jz .no_cpuid ; CPUID unsupported if no change
; CPUID supported, verify features
mov eax, 1
cpuid
; Check for paging support (bit 31 of edx)
test edx, 1 << 31
jz .no_paging_support
; Additional CPU feature checks could be added here
jmp .cpuid_check_done
.no_cpuid:
mov si, no_cpuid_msg
call print_string_16
jmp halt
.no_paging_support:
mov si, no_paging_msg
call print_string_16
jmp halt
.cpuid_check_done:
; Temporarily switch back to real mode
cli
mov eax, cr0
and eax, 0x7FFFFFFE ; Clear PE & PG bits
mov cr0, eax
jmp 0x18:real_mode_entry
; ----------------------------------------------------------------
[BITS 16]
real_mode_entry:
; Real mode for BIOS access (E820, VESA)
xor ax, ax
mov es, ax
; VESA call
mov di, VbeControllerInfo
mov ax, 0x4F00
int 0x10
jc vesa_error
; E820 memory map
xor ebx, ebx
mov edx, 0x534D4150
mov di, MemoryMapBuffer
mov [MemoryMapEntries], dword 0
.e820_loop:
mov eax, 0xE820
mov ecx, 24
int 0x15
jc e820_error
add di, 24
inc dword [MemoryMapEntries]
test ebx, ebx
jnz .e820_loop
jmp e820_done
e820_error:
mov si, e820_error_msg
call print_string_16
jmp halt
vesa_error:
mov si, vesa_error_msg
call print_string_16
; Fallback: set VGA text mode 3 and continue
mov ah, 0x00 ; BIOS Set Video Mode function
mov al, 0x03 ; VGA 80x25 text mode
int 0x10
; Clear screen
mov ah, 0x06 ; Scroll up function
mov al, 0 ; Clear entire screen
mov bh, 0x07 ; Text attribute (gray on black)
mov cx, 0 ; Upper-left corner
mov dx, 0x184F ; Lower-right corner
int 0x10
jmp e820_done ; Continue booting without VESA graphics
e820_done:
; Back to protected mode
cli
mov eax, cr0
or eax, 1
mov cr0, eax
jmp 0x08:protected_entry
; ----------------------------------------------------------------
[BITS 16]
print_string_16:
.loop:
lodsb
or al, al
jz .done
mov ah, 0x0E
int 0x10
jmp .loop
.done:
ret
e820_error_msg db "E820 Failed!", 0
vesa_error_msg db "VESA Failed!", 0
no_cpuid_msg db "No CPUID support detected!", 0
no_paging_msg db "CPU lacks paging support!", 0
; ----------------------------------------------------------------
[BITS 32]
protected_entry:
; Paging setup
xor eax, eax
mov edi, page_directory
mov ecx, 1024
rep stosd
mov edi, page_table
rep stosd
mov eax, page_table
or eax, 0x3
mov [page_directory], eax
mov ecx, 1024
mov edi, page_table
mov eax, 0x00000003
.fill_pages:
mov [edi], eax
add eax, 0x1000
add edi, 4
loop .fill_pages
mov eax, page_directory
mov cr3, eax
mov eax, cr0
or eax, 0x80000000
mov cr0, eax
jmp kmain
halt:
cli
.hang:
hlt
jmp .hang
; ----------------------------------------------------------------
; Data buffers and variables must be appropriately defined in your data section
MemoryMapBuffer times 128 db 0 ; 128*24 bytes reserved for E820 memory map (adjust size as needed)
MemoryMapEntries dd 0
VbeControllerInfo times 512 db 0 ; Buffer for VESA controller info (adjust size as needed)
; Define page directory and page table aligned as needed (in your data section)
align 4096
page_directory times 1024 dd 0
align 4096
page_table times 1024 dd 0
%assign pad_size 4096
%ifdef __SIZE__
%define size_current __SIZE__
%else
%define size_current ($ - $$)
%endif
%if size_current < pad_size
times pad_size - size_current db 0
%endif
checksum_byte db 0

View File

@@ -1,26 +0,0 @@
ENTRY(kmain)
SECTIONS {
. = 1M;
.text : {
*(.text*)
}
.rodata : { *(.rodata*) }
.data : { *(.data*) }
.bss : {
*(.bss*)
*(COMMON)
}
.stack (NOLOAD) : {
. = ALIGN(4);
. = . + 0x1000;
}
.heap (NOLOAD) : {
. = ALIGN(4);
. = . + 0x10000;
}
}

View File

@@ -2,10 +2,16 @@
; boot.asm - First Stage Bootloader (CHS Based)
; ==============================================================================
[BITS 16]
; [ORG 0x7C00]
; Params for stage2
%define s2_addr 1 ; stage2 disk offset, in sectors
%define s2_laddr 0x7e00 ; stage2 load address
%define s2_size 2048 ; stage2 size
%define s2_nsect s2_size / 512 ; stage2 size in sectors
start:
[BITS 16]
global _start
_start:
cli ; Disable interrupts
mov [bootdev], dl ; Save boot device number (from BIOS in DL)
@@ -20,29 +26,16 @@ start:
mov ds, ax
mov es, ax
; Query bios for disk parameters
call get_disk_params
; Load second-stage bootloader (boot1.asm) to 0x7E00
mov ax, 1 ; LBA of boot1.asm (starts at sector 1)
call lba_to_chs
mov al, 4 ; Number of sectors to read
mov al, s2_nsect ; Number of sectors to read
mov bx, 0x7E00 ; Destination address offset ES = 0 (0x0000:0x7E00)
call read_chs
; Load kernel to 0x100000 (1 MB)
mov ax, 0xffff
mov es, ax ; Set ES for destination address (0xffff << 4 == 0xffff0)
mov ax, 5 ; LBA of kernel start (boot1 is 4 sectors: LBA 14 → kernel at LBA 5)
call lba_to_chs
mov al, 16 ; Number of sectors for kernel
mov bx, 0x10 ; Destination address offset (0xffff:0x10 = 0xffff << 4 + 0x10 = 0x100000)
call read_chs
jc disk_error
; Memory Validation: Verify checksum of second stage bootloader
mov si, 0x7E00 ; Start of second stage
mov cx, 512 * 4 ; Size in bytes (adjust if more sectors loaded)
call verify_checksum
jc disk_error ; Jump if checksum fails
; Enable A20 line
call enable_a20
jc a20_error ; Jump if A20 enable fails
@@ -95,17 +88,32 @@ verify_checksum:
pop ax
ret
get_disk_params:
mov ah, 08h ; BIOS: Get Drive Parameters
int 13h
; TODO: error checking
; CL bits 05 contain sectors per track
mov al, cl
and al, 3Fh ; mask bits 05
mov ah, 0
mov [sectors_per_track], ax
; DH = maximum head number (0-based)
mov al, dh
inc ax ; convert to count (heads = maxhead + 1)
mov [heads_per_cylinder], ax
ret
; ----------------------------------------------------------------
; CHS Disk Read Routine
; AL = number of sectors
; CL = starting sector (1-based)
; SI = destination offset (Segment:ES already set)
; Inputs:
; AL = sector count
; CH = cylinder
; DH = head
; CL = sector (163, with top 2 bits as high cylinder bits)
; SI = destination offset (segment ES must be set)
; ----------------------------------------------------------------
; Convert LBA to CHS
@@ -117,36 +125,29 @@ verify_checksum:
; CL = sector (1-63, top 2 bits are upper cylinder bits)
lba_to_chs:
pusha
; Sector
xor dx, dx
mov bx, [sectors_per_track]
div bx ; AX = LBA / sectors_per_track, DX = remainder (sector number)
mov si, ax ; SI = temp quotient (track index)
mov cx, [heads_per_cylinder]
xor dx, dx
div cx ; AX = cylinder, DX = head
mov ch, al ; CH = cylinder low byte
mov dh, dl ; DH = head
mov bx, ax
div word [sectors_per_track] ; divide lba with max sectors
add dl, 1 ; take the remainder, sectors start at 1
mov cl, dl ; sector is in cl
; Now take sector number from earlier remainder
mov cx, si ; Copy track index to CX to access CL
and cl, 0x3F ; Mask to 6 bits (sector number)
inc cl ; Sector numbers are 1-based
; Head
mov ax, bx
mov dx, 0
div word [sectors_per_track] ; divide lba with max sectors
mov dx, 0
div word [heads_per_cylinder] ; divide quotient with heads
mov dh, dl ; take the remainder, head is in dh
; Insert upper 2 bits of cylinder into CL
mov ah, al ; AH = cylinder again
and ah, 0xC0 ; Get top 2 bits of cylinder
or cl, ah ; OR them into sector byte
popa
; Cylinder
mov ch, al ; take the quotient, cylinder is in ch
ret
read_chs:
pusha
push dx
mov cx, 5
.retry:
mov ah, 0x02 ; BIOS: Read sectors
mov dl, [bootdev] ; Boot device
@@ -262,7 +263,7 @@ switch_to_pm:
mov eax, cr0
or eax, 1
mov cr0, eax
jmp 0x08:0x7E00
jmp 0x08:0x7E00 ; jump to S2
; ----------------------------------------------------------------
print_string_16:
@@ -284,8 +285,8 @@ halt:
hlt
bootdev db 0
sectors_per_track dw 63
heads_per_cylinder dw 255
sectors_per_track dw 0
heads_per_cylinder dw 0
times 510 - ($ - $$) db 0
dw 0xAA55

26
bootloader/stage2.asm Normal file
View File

@@ -0,0 +1,26 @@
[BITS 32]
global _start
global ata_lba_read
extern load_kernel
_start:
; Set up segments
; Data segments
mov ax, 0x10
mov ds, ax
mov es, ax
mov fs, ax
mov gs, ax
mov ss, ax
; Code segment
mov ax, 0x08
mov cs, ax
; Stack (must be identity-mapped)
mov esp, 0x90000
call load_kernel
jmp eax

12
bootloader/stage2.ld Normal file
View File

@@ -0,0 +1,12 @@
SECTIONS {
. = 0x7e00;
.text : { *(.text*) }
.rodata : { *(.rodata*) }
.data : { *(.data*) }
.bss : {
*(.bss*)
*(COMMON)
}
}

235
bootloader/stage2_load.c Normal file
View File

@@ -0,0 +1,235 @@
#include <stddef.h>
#include <stdint.h>
// ATA IO Ports
#define ATA_PRIMARY_DATA 0x1F0
#define ATA_PRIMARY_ERR_FEATURES 0x1F1
#define ATA_PRIMARY_SEC_COUNT 0x1F2
#define ATA_PRIMARY_LBA_LOW 0x1F3
#define ATA_PRIMARY_LBA_MID 0x1F4
#define ATA_PRIMARY_LBA_HIGH 0x1F5
#define ATA_PRIMARY_DRIVE_SEL 0x1F6
#define ATA_PRIMARY_COMM_STAT 0x1F7
// ATA Commands
#define ATA_CMD_READ_PIO 0x20
#define ATA_CMD_WRITE_PIO 0x30
// ELF Ident indexes
#define EI_NIDENT 16
// Program header types
#define PT_NULL 0
#define PT_LOAD 1
// Disk sector size
#define SECTOR_SIZE 512
#define PH_PER_SECTOR (SECTOR_SIZE / sizeof(Elf32_Phdr))
// Kernel start LBA
#define KERN_START_SECT 5
// VGA
// Expects bios initialization for text mode (3), buffer at 0xb8000
#define VGA_ADDRESS 0xB8000
#define VGA_COLS 80
#define VGA_ROWS 25
// ELF Header (32-bit)
typedef struct {
uint8_t e_ident[EI_NIDENT];
uint16_t e_type;
uint16_t e_machine;
uint32_t e_version;
uint32_t e_entry; // Entry point
uint32_t e_phoff; // Program header table offset
uint32_t e_shoff; // Section header table offset
uint32_t e_flags;
uint16_t e_ehsize;
uint16_t e_phentsize;
uint16_t e_phnum;
uint16_t e_shentsize;
uint16_t e_shnum;
uint16_t e_shstrndx;
} __attribute__((packed)) Elf32_Ehdr;
// Program Header (32-bit)
typedef struct {
uint32_t p_type;
uint32_t p_offset;
uint32_t p_vaddr;
uint32_t p_paddr;
uint32_t p_filesz;
uint32_t p_memsz;
uint32_t p_flags;
uint32_t p_align;
} __attribute__((packed)) Elf32_Phdr;
static inline uint8_t inb(uint16_t port)
{
uint8_t ret;
__asm__ volatile ("inb %1, %0"
: "=a"(ret)
: "Nd"(port));
return ret;
}
static inline void outb(uint16_t port, uint8_t val)
{
__asm__ volatile ("outb %0, %1"
:
: "a"(val), "Nd"(port));
}
static inline uint16_t inw(uint16_t port)
{
uint16_t ret;
__asm__ volatile ("inw %1, %0"
: "=a"(ret)
: "Nd"(port));
return ret;
}
static inline void ata_wait_bsy() {
while (inb(ATA_PRIMARY_COMM_STAT) & 0x80);
}
static inline void ata_wait_drq() {
while (!(inb(ATA_PRIMARY_COMM_STAT) & 0x08));
}
static void ata_read_sector(void *addr, uint32_t lba) {
ata_wait_bsy();
outb(ATA_PRIMARY_DRIVE_SEL, 0xE0 | ((lba >> 24) & 0x0F));
outb(ATA_PRIMARY_SEC_COUNT, 1);
outb(ATA_PRIMARY_LBA_LOW, (uint8_t)lba);
outb(ATA_PRIMARY_LBA_MID, (uint8_t)(lba >> 8));
outb(ATA_PRIMARY_LBA_HIGH, (uint8_t)(lba >> 16));
outb(ATA_PRIMARY_COMM_STAT, ATA_CMD_READ_PIO);
uint16_t* ptr = (uint16_t*)addr;
ata_wait_bsy();
ata_wait_drq();
for (int i = 0; i < 256; i++) {
*ptr++ = inw(ATA_PRIMARY_DATA);
}
}
static void ata_read_sectors(uint8_t *addr, uint32_t offset, uint32_t size)
{
// Reads are offset from the starting sector of the kernel
uint32_t lba = KERN_START_SECT + offset / SECTOR_SIZE;
uint32_t off = offset % 512;
uint8_t data[512];
while (size > 0) {
ata_read_sector(data, lba);
uint32_t copy = 512 - off;
if (copy > size) {
copy = size;
}
for (uint32_t i = 0; i < copy; i++) {
addr[i] = data[off + i];
}
addr += copy;
size -= copy;
lba++;
off = 0;
}
}
static void on_error(const char *msg)
{
uint16_t *ptr = (uint16_t *)VGA_ADDRESS;
// Clear
uint16_t val = 0x0f00 | (uint8_t)' ';
for (size_t i = 0; i < VGA_COLS * VGA_ROWS; i++) {
ptr[i] = val;
}
// Print error
for (size_t i = 0; msg[i]; i++) {
ptr[i] = 0xf00 | (uint8_t)msg[i];
}
// Halt
while (1) {
__asm__("hlt");
}
}
// Load an ELF executable into memory.
// NOTE: Only 32-byte program headers are supported.
// Returns the entry point to the program.
static void *elf_load(const void *data) {
const Elf32_Ehdr *header = (const Elf32_Ehdr*)data;
if (header->e_phentsize != sizeof(Elf32_Phdr)) {
// The bootloader only handles 32-byte program header entries
on_error("ERROR: Unsupported program header entry size, halting...");
}
// Buffer for the program headers
uint8_t file_buf[SECTOR_SIZE];
// Current file offset to the next program header
uint32_t file_offset = header->e_phoff;
for (int i = 0; i < header->e_phnum; i++) {
// Check for sector boundary.
// Program headers are read in a sector at a time
// 512 / 32 = 16 PH per sector
if (i % PH_PER_SECTOR == 0) {
uint32_t count = (header->e_phnum - i) * sizeof(Elf32_Phdr);
if (count > SECTOR_SIZE) {
count = SECTOR_SIZE;
}
// Reads
ata_read_sectors(file_buf, file_offset, count);
file_offset += count;
}
// PH being processed currently, index mod 16 as headers
// are being loaded in sector by sector.
const Elf32_Phdr *ph = (const Elf32_Phdr *)file_buf + (i % PH_PER_SECTOR);
// Discard non-load segments
if (ph->p_type != PT_LOAD)
continue;
// Load in the segment
uint32_t offset = ph->p_offset;
uint32_t filesz = ph->p_filesz;
uint32_t memsz = ph->p_memsz;
uint8_t *vaddr = (uint8_t *)ph->p_vaddr;
ata_read_sectors(vaddr, offset, filesz);
// Zero remaining BSS (if any)
if (memsz > filesz) {
uint8_t* bss_start = vaddr + filesz;
for (uint32_t j = 0; j < memsz - filesz; j++) {
bss_start[j] = 0;
}
}
}
// Return the entry point
return (void *)header->e_entry;
}
void *load_kernel(void) {
// ELF header buffer
uint8_t header_buf[SECTOR_SIZE];
// Read the first sector (contains the ELF header)
ata_read_sector(header_buf, KERN_START_SECT);
// `elf_load()` returns the entry point
return elf_load(header_buf);
}

169
configure vendored Executable file
View File

@@ -0,0 +1,169 @@
#!/usr/bin/env bash
set -euo pipefail
# Configuration
TARGET="i386-elf"
BINUTILS_VERSION="2.45"
GCC_VERSION="15.2.0"
# Paths
SCRIPT_PATH="$(realpath "${BASH_SOURCE[0]}")"
SCRIPT_DIR="$(dirname "$SCRIPT_PATH")"
PREFIX="$SCRIPT_DIR/cross"
SRC_DIR="$PREFIX/src"
BINUTILS_SRC="$SRC_DIR/binutils-$BINUTILS_VERSION"
BINUTILS_BUILD="$PREFIX/build-binutils"
GCC_SRC="$SRC_DIR/gcc-$GCC_VERSION"
GCC_BUILD="$PREFIX/build-gcc"
# Flags
DEBUG=0
HELP=0
# Parse arguments
for arg in "$@"; do
case "$arg" in
-h|--help)
HELP=1
;;
-d|--debug)
DEBUG=1
;;
*)
echo "Unknown option: $arg"
echo "Use -h or --help for usage information"
exit 1
;;
esac
done
# Show help
if [[ "$HELP" -eq 1 ]]; then
cat << EOF
Usage: $0 [OPTIONS]
Build a cross-compiler toolchain for $TARGET.
OPTIONS:
-h, --help Show this help message
-d, --debug Enable debug mode (set -x)
This script will:
1. Download binutils $BINUTILS_VERSION and GCC $GCC_VERSION
2. Build and install them to: $PREFIX
EOF
exit 0
fi
# Enable debug mode
if [[ "$DEBUG" -eq 1 ]]; then
set -x
fi
# Print configuration
cat << EOF
=== Build Configuration ===
Target : $TARGET
Prefix : $PREFIX
Binutils : $BINUTILS_VERSION
GCC : $GCC_VERSION
===========================
EOF
# Create directory structure
echo "Setting up directories..."
mkdir -p "$SRC_DIR"
# Download sources
cd "$SRC_DIR"
if [[ ! -d "$BINUTILS_SRC" ]]; then
echo "Downloading binutils $BINUTILS_VERSION..."
wget "https://ftp.gnu.org/gnu/binutils/binutils-$BINUTILS_VERSION.tar.gz"
echo "Extracting binutils..."
tar xf "binutils-$BINUTILS_VERSION.tar.gz"
rm "binutils-$BINUTILS_VERSION.tar.gz"
else
echo "Binutils source already exists, skipping download"
fi
if [[ ! -d "$GCC_SRC" ]]; then
echo "Downloading GCC $GCC_VERSION..."
wget "https://ftp.gnu.org/gnu/gcc/gcc-$GCC_VERSION/gcc-$GCC_VERSION.tar.gz"
echo "Extracting GCC..."
tar xf "gcc-$GCC_VERSION.tar.gz"
rm "gcc-$GCC_VERSION.tar.gz"
else
echo "GCC source already exists, skipping download"
fi
# Download GCC prerequisites
if [[ ! -d "$GCC_SRC/gmp" ]]; then
echo "Downloading GCC prerequisites..."
cd "$GCC_SRC"
./contrib/download_prerequisites
cd "$SRC_DIR"
else
echo "GCC prerequisites already downloaded, skipping"
fi
# Build binutils
if [[ ! -f "$PREFIX/bin/$TARGET-ld" ]]; then
echo "Building binutils..."
mkdir -p "$BINUTILS_BUILD"
cd "$BINUTILS_BUILD"
"$BINUTILS_SRC/configure" \
--target="$TARGET" \
--prefix="$PREFIX" \
--with-sysroot \
--disable-nls \
--disable-werror
make -j"$(nproc)"
make install
else
echo "Binutils already installed, skipping build"
fi
# Build GCC
if [[ ! -f "$PREFIX/bin/$TARGET-gcc" ]]; then
echo "Building GCC..."
mkdir -p "$GCC_BUILD"
cd "$GCC_BUILD"
"$GCC_SRC/configure" \
--target="$TARGET" \
--prefix="$PREFIX" \
--disable-nls \
--enable-languages=c \
--without-headers
make all-gcc -j"$(nproc)"
make all-target-libgcc -j"$(nproc)"
make install-gcc
make install-target-libgcc
else
echo "GCC already installed, skipping build"
fi
cd "$SCRIPT_DIR"
# Generate .build.env file
cat > .build.env << EOF
# Generated by configure on $(date)
# Source this file to add the cross-compiler toolchain to your PATH
export PATH="$PREFIX/bin:\$PATH"
EOF
echo ""
echo "=== Build Complete ==="
echo "Toolchain installed to: $PREFIX"
echo ""
echo "To use the toolchain, run:"
echo " source .build.env"
echo "======================"

6
gdb.txt Normal file
View File

@@ -0,0 +1,6 @@
target remote :1234
add-symbol-file build/stage1.elf
add-symbol-file build/stage2.elf
add-symbol-file build/kernel.elf
hbreak *0x7c00
c

43
kernel/ata.h Normal file
View File

@@ -0,0 +1,43 @@
#ifndef ATA_H
#define ATA_H
#include <stdint.h>
#include <stdbool.h>
/* ATA I/O ports */
#define ATA_PRIMARY_IO 0x1F0
#define ATA_PRIMARY_CTRL 0x3F6
/* ATA registers */
#define ATA_REG_DATA 0x00
#define ATA_REG_ERROR 0x01
#define ATA_REG_FEATURES 0x01
#define ATA_REG_SECCOUNT0 0x02
#define ATA_REG_LBA0 0x03
#define ATA_REG_LBA1 0x04
#define ATA_REG_LBA2 0x05
#define ATA_REG_HDDEVSEL 0x06
#define ATA_REG_COMMAND 0x07
#define ATA_REG_STATUS 0x07
/* ATA commands */
#define ATA_CMD_READ_PIO 0x20
#define ATA_CMD_WRITE_PIO 0x30
#define ATA_CMD_IDENTIFY 0xEC
/* Status flags */
#define ATA_SR_BSY 0x80
#define ATA_SR_DRDY 0x40
#define ATA_SR_DRQ 0x08
#define ATA_SR_ERR 0x01
/* Drive select */
#define ATA_MASTER 0x00
#define ATA_SLAVE 0x10
/* Public API */
bool ata_init(void);
bool ata_read_sector(uint32_t lba, uint8_t* buffer);
bool ata_write_sector(uint32_t lba, const uint8_t* buffer);
#endif

25
kernel/context_switch.asm Normal file
View File

@@ -0,0 +1,25 @@
global ctx_switch
; void ctx_switch(uint32_t **old_sp_ptr, uint32_t *new_sp);
; Arguments on stack (cdecl convention):
; [ESP + 4] -> old_sp_ptr (pointer to the 'stack_ptr' field of current task)
; [ESP + 8] -> new_sp (value of 'stack_ptr' of the next task)
ctx_switch:
; 1. Save the context of the CURRENT task
pushf ; Save EFLAGS (CPU status flags)
pusha ; Save all General Purpose Regs (EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI)
; 2. Save the current stack pointer (ESP) into the pointer passed as 1st arg
mov eax, [esp + 40] ; Get 1st argument (old_sp_ptr). Offset 40 = 36 (regs) + 4 (ret addr)
mov [eax], esp ; *old_sp_ptr = ESP
; 3. Load the stack pointer of the NEW task
mov esp, [esp + 44] ; Get 2nd argument (new_sp). Offset 44 = 40 + 4
; 4. Restore the context of the NEW task
popa ; Restore all General Purpose Regs
popf ; Restore EFLAGS
; 5. Jump to the new task (The 'ret' pops EIP from the new stack)
ret

View File

@@ -2,36 +2,106 @@
#include "serial.h"
#include "terminal.h"
#include "utils.h"
#include "print.h"
void cpuid(uint32_t function, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) {
void cpuid(uint32_t leaf, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) {
__asm__(
"cpuid"
: "=a"(*eax), "=b"(*ebx), "=c"(*ecx), "=d"(*edx)
: "a"(function)
: "a"(leaf)
);
}
// Helper to print a labeled decimal value
void print_val(const char* label, uint32_t val) {
char buf[12];
utoa(val, buf, 10);
terminal_write(label);
terminal_write(buf);
terminal_write(" ");
}
// Safely check if CPUID is supported by attempting to flip bit 21 of EFLAGS
int check_cpuid_supported() {
uint32_t f1, f2;
__asm__ volatile (
"pushfl\n\t"
"pushfl\n\t"
"popl %0\n\t"
"movl %0, %1\n\t"
"xorl $0x200000, %0\n\t"
"pushl %0\n\t"
"popfl\n\t"
"pushfl\n\t"
"popl %0\n\t"
"popfl\n\t"
: "=&r" (f1), "=&r" (f2));
return ((f1 ^ f2) & 0x200000) != 0;
}
void identify_cpu() {
if (!check_cpuid_supported()) {
terminal_write("CPUID not supported. Likely a 386 or early 486.\n");
return;
}
uint32_t eax, ebx, ecx, edx;
char vendor[13];
// Leaf 0: Vendor String & Max Leaf
cpuid(0, &eax, &ebx, &ecx, &edx);
uint32_t max_leaf = eax;
*(uint32_t *)&vendor[0] = ebx;
*(uint32_t *)&vendor[4] = edx;
*(uint32_t *)&vendor[8] = ecx;
vendor[12] = '\0';
terminal_write("CPU Vendor: ");
terminal_write("Vendor: ");
terminal_write(vendor);
terminal_write("\n");
serial_write("CPU Vendor: ");
serial_write(vendor);
serial_write("\n");
// Leaf 1: Family, Model, Stepping
if (max_leaf >= 1) {
cpuid(1, &eax, &ebx, &ecx, &edx);
terminal_write("CPUID max leaf: ");
print_hex(eax, false, false); // You must implement this (see below)
terminal_write("\n");
uint32_t stepping = eax & 0xF;
uint32_t model = (eax >> 4) & 0xF;
uint32_t family = (eax >> 8) & 0xF;
uint32_t type = (eax >> 12) & 0x3;
// Handle Extended Family/Model (Required for Pentium 4 and newer)
if (family == 0xF) {
family += (eax >> 20) & 0xFF;
model += ((eax >> 16) & 0xF) << 4;
}
print_val("Family:", family);
print_val("Model:", model);
print_val("Step:", stepping);
terminal_write("\n");
}
// Leaf 2: Cache Descriptors
if (max_leaf >= 2) {
cpuid(2, &eax, &ebx, &ecx, &edx);
terminal_write("Cache Descriptors: ");
// Note: Leaf 2 returns a list of 1-byte descriptors in the registers.
// We look for common Intel ones:
uint32_t regs[4] = {eax, ebx, ecx, edx};
for (int i = 0; i < 4; i++) {
if (regs[i] & 0x80000000) continue; // Reserved bit
for (int j = 0; j < 4; j++) {
uint8_t desc = (regs[i] >> (j * 8)) & 0xFF;
if (desc == 0) continue;
// Example decoding for specific chips you mentioned:
if (desc == 0x06) terminal_write("8KB L1 I-Cache ");
if (desc == 0x0A) terminal_write("8KB L1 D-Cache ");
if (desc == 0x41) terminal_write("128KB L2 ");
if (desc == 0x43) terminal_write("512KB L2 ");
if (desc == 0x2C) terminal_write("32KB L1 D-Cache ");
}
}
terminal_write("\n");
}
}

View File

@@ -2,8 +2,42 @@
#define CPU_H
#include <stdint.h>
#include <stdbool.h>
void cpuid(uint32_t function, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx);
// Specific Intel Model Definitions for your targets
#define INTEL_FAM4_486_DX 0x00 // Also 0x01
#define INTEL_FAM4_486_SX 0x02
#define INTEL_FAM4_486_DX2 0x03
#define INTEL_FAM4_486_DX4 0x08
#define INTEL_FAM5_PENTIUM 0x01 // P5
#define INTEL_FAM5_PENTIUM_MMX 0x04 // P55C
#define INTEL_FAM6_PENTIUM_PRO 0x01 // P6
#define INTEL_FAM6_PENTIUM_II 0x05 // Deschutes
#define INTEL_FAM6_PENTIUM_III 0x07 // Katmai/Coppermine
#define INTEL_FAM15_P4_WILLY 0x00 // Willamette
#define INTEL_FAM15_P4_NORTH 0x02 // Northwood
#define INTEL_FAM15_P4_PRES 0x03 // Prescott
typedef struct {
char vendor[13];
uint32_t family;
uint32_t model;
uint32_t stepping;
uint32_t type;
uint32_t max_leaf;
// Feature flags (optional, but very helpful later)
bool has_fpu;
bool has_mmx;
bool has_sse;
} cpu_info_t;
// Function Prototypes
void cpuid(uint32_t leaf, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx);
bool cpu_check_cpuid_support(void);
void identify_cpu(void);
// Helper to get the current CPU info after identification
cpu_info_t* cpu_get_info(void);
#endif // CPU_H

View File

@@ -1,5 +1,196 @@
#include "fat12.h"
#include <stddef.h> // for NULL
// --- Globals for Filesystem State ---
static fat12_bpb_t bpb;
static uint32_t fat_start_lba;
static uint32_t root_dir_lba;
static uint32_t data_start_lba;
static uint32_t root_dir_sectors;
// Scratch buffer to read sectors (avoids large stack usage)
static uint8_t g_sector_buffer[FAT12_SECTOR_SIZE];
// --- Utils (Since we don't have string.h) ---
static int k_memcmp(const void *s1, const void *s2, uint32_t n) {
const uint8_t *p1 = (const uint8_t *)s1;
const uint8_t *p2 = (const uint8_t *)s2;
for (uint32_t i = 0; i < n; i++) {
if (p1[i] != p2[i]) {
// Correct way to return the difference:
// If p1[i] > p2[i], returns positive.
// If p1[i] < p2[i], returns negative.
return (int)p1[i] - (int)p2[i];
}
}
return 0;
}
// Converts "file.txt" to "FILE TXT" for comparison
static void to_fat_name(const char *src, char *dest) {
// Initialize with spaces
for(int i=0; i<11; i++) dest[i] = ' ';
int i = 0, j = 0;
// Copy Name
while (src[i] != '\0' && src[i] != '.' && j < 8) {
// Convert to uppercase (simple version)
char c = src[i];
if (c >= 'a' && c <= 'z') c -= 32;
dest[j++] = c;
i++;
}
// Skip extension dot
if (src[i] == '.') i++;
// Copy Extension
j = 8;
while (src[i] != '\0' && j < 11) {
char c = src[i];
if (c >= 'a' && c <= 'z') c -= 32;
dest[j++] = c;
i++;
}
}
// --- Core Logic ---
void fat12_init() {
// Filesystem initialization code
// 1. Read Boot Sector (LBA 0)
disk_read_sector(0, g_sector_buffer);
// 2. Copy BPB data safely
// We cast the buffer to our struct
fat12_bpb_t *boot_sector = (fat12_bpb_t*)g_sector_buffer;
bpb = *boot_sector;
// 3. Calculate System Offsets
fat_start_lba = bpb.reserved_sectors;
// Root Dir starts after FATs
// LBA = Reserved + (FatCount * SectorsPerFat)
root_dir_lba = fat_start_lba + (bpb.fat_count * bpb.sectors_per_fat);
// Calculate size of Root Directory in sectors
// (Entries * 32 bytes) / 512
root_dir_sectors = (bpb.dir_entries_count * 32 + FAT12_SECTOR_SIZE - 1) / FAT12_SECTOR_SIZE;
// Data starts after Root Directory
data_start_lba = root_dir_lba + root_dir_sectors;
}
// Helper: Read the FAT table to find the NEXT cluster
static uint16_t fat12_get_next_cluster(uint16_t current_cluster) {
// FAT12 Offset Calculation:
// Offset = Cluster + (Cluster / 2)
uint32_t fat_offset = current_cluster + (current_cluster / 2);
uint32_t fat_sector = fat_start_lba + (fat_offset / FAT12_SECTOR_SIZE);
uint32_t ent_offset = fat_offset % FAT12_SECTOR_SIZE;
// Read the sector containing the FAT entry
disk_read_sector(fat_sector, g_sector_buffer);
// Read 16 bits (2 bytes)
// Note: If ent_offset == 511, the entry spans two sectors.
// For simplicity in this snippet, we ignore that edge case (rare).
// A robust kernel would check if(ent_offset == 511) and read next sector.
uint16_t val = *(uint16_t*)&g_sector_buffer[ent_offset];
if (current_cluster & 1) {
return val >> 4; // Odd: High 12 bits
} else {
return val & 0x0FFF; // Even: Low 12 bits
}
}
file_t fat12_open(const char *filename) {
file_t file = {0};
char target_name[11];
to_fat_name(filename, target_name);
// Search Root Directory
for (uint32_t i = 0; i < root_dir_sectors; i++) {
disk_read_sector(root_dir_lba + i, g_sector_buffer);
fat12_entry_t *entry = (fat12_entry_t*)g_sector_buffer;
// Check all 16 entries in this sector (512 / 32 = 16)
for (int j = 0; j < 16; j++) {
if (entry[j].filename[0] == 0x00) return file; // End of Dir
// Check if filename matches
if (k_memcmp(entry[j].filename, target_name, 11) == 0) {
// Found it!
file.start_cluster = entry[j].low_cluster_num;
file.size = entry[j].file_size;
// Initialize file cursor
file.current_cluster = file.start_cluster;
file.bytes_read = 0;
return file;
}
}
}
// Not found (file.start_cluster will be 0)
return file;
}
uint32_t fat12_read(file_t *file, uint8_t *buffer, uint32_t bytes_to_read) {
if (file->start_cluster == 0) return 0; // File not open
uint32_t total_read = 0;
while (bytes_to_read > 0) {
// Check for EOF marker in FAT12 (>= 0xFF8)
if (file->current_cluster >= 0xFF8) break;
// Calculate Physical LBA of current cluster
// LBA = DataStart + ((Cluster - 2) * SectorsPerCluster)
uint32_t lba = data_start_lba + ((file->current_cluster - 2) * bpb.sectors_per_cluster);
// Read the cluster
// NOTE: Assumes SectorsPerCluster = 1 (Standard Floppy)
disk_read_sector(lba, g_sector_buffer);
// Determine how much to copy from this sector
uint32_t chunk_size = FAT12_SECTOR_SIZE;
// If the file is smaller than a sector, or we are at the end
if (chunk_size > bytes_to_read) chunk_size = bytes_to_read;
// Check if we are reading past file size
if (file->bytes_read + chunk_size > file->size) {
chunk_size = file->size - file->bytes_read;
}
// Copy to user buffer
for (uint32_t i = 0; i < chunk_size; i++) {
buffer[total_read + i] = g_sector_buffer[i];
}
total_read += chunk_size;
file->bytes_read += chunk_size;
bytes_to_read -= chunk_size;
// If we finished this cluster, move to the next one
if (chunk_size == FAT12_SECTOR_SIZE) { // Or strictly logic based on position
file->current_cluster = fat12_get_next_cluster(file->current_cluster);
} else {
// We finished the file or the request
break;
}
}
return total_read;
}
int disk_read_sector(uint32_t lba, uint8_t *buffer) {
// For now, do nothing and return success
return 0;
}

View File

@@ -1,47 +1,67 @@
#ifndef FAT12_H
#define FAT12_H
#include <stdint.h> /* Include standard integer types */
#include <stdio.h> /* Include standard I/O library */
#include <stdlib.h> /* Include standard library */
#include <stdint.h>
#define FAT12_SECTOR_SIZE 512 /* Sector size for FAT12 */
#define FAT12_MAX_FILES 128 /* Maximum number of files in root directory */
#define FAT12_ROOT_DIR_SECTORS 1 /* Number of sectors for root directory */
// --- Configuration ---
#define FAT12_SECTOR_SIZE 512
// --- On-Disk Structures (Must be Packed) ---
// BIOS Parameter Block (Start of Boot Sector)
typedef struct {
uint8_t jump[3]; /* Jump instruction for boot */
char oem[8]; /* OEM name */
uint16_t bytes_per_sector; /* Bytes per sector */
uint8_t sectors_per_cluster; /* Sectors per cluster */
uint16_t reserved_sectors; /* Reserved sectors count */
uint8_t num_fats; /* Number of FATs */
uint16_t max_root_dir_entries; /* Max entries in root directory */
uint16_t total_sectors; /* Total sectors */
uint8_t media_descriptor; /* Media descriptor */
uint16_t fat_size; /* Size of each FAT */
uint16_t sectors_per_track; /* Sectors per track */
uint16_t num_heads; /* Number of heads */
uint32_t hidden_sectors; /* Hidden sectors count */
uint32_t total_sectors_large; /* Total sectors for large disks */
} __attribute__((packed)) FAT12_BootSector; /* Packed structure for boot sector */
uint8_t jump[3];
char oem[8];
uint16_t bytes_per_sector; // 512
uint8_t sectors_per_cluster; // 1
uint16_t reserved_sectors; // 1 (Boot sector)
uint8_t fat_count; // 2
uint16_t dir_entries_count; // 224
uint16_t total_sectors; // 2880
uint8_t media_descriptor; // 0xF0
uint16_t sectors_per_fat; // 9
uint16_t sectors_per_track; // 18
uint16_t heads; // 2
uint32_t hidden_sectors;
uint32_t total_sectors_large;
} __attribute__((packed)) fat12_bpb_t;
// Directory Entry (32 bytes)
typedef struct {
char name[11]; /* File name (8.3 format) */
uint8_t attr; /* File attributes */
uint16_t reserved; /* Reserved */
uint16_t time; /* Time of last write */
uint16_t date; /* Date of last write */
uint16_t start_cluster; /* Starting cluster number */
uint32_t file_size; /* File size in bytes */
} __attribute__((packed)) FAT12_DirEntry; /* Directory entry structure */
char filename[8];
char ext[3];
uint8_t attributes;
uint8_t reserved;
uint8_t creation_ms;
uint16_t creation_time;
uint16_t creation_date;
uint16_t last_access_date;
uint16_t high_cluster_num; // Always 0 in FAT12
uint16_t last_mod_time;
uint16_t last_mod_date;
uint16_t low_cluster_num; // The starting cluster
uint32_t file_size; // Size in bytes
} __attribute__((packed)) fat12_entry_t;
void initialize_fat12(const char *disk_image); /* Function to initialize FAT12 */
void read_fat12(const char *disk_image); /* Function to read FAT12 */
void write_fat12(const char *disk_image); /* Function to write FAT12 */
void list_files(const char *disk_image); /* Function to list files in root directory */
void read_file(const char *disk_image, const char *filename); /* Function to read a file */
void write_file(const char *disk_image, const char *filename, const uint8_t *data, size_t size); /* Function to write a file */
// --- Kernel File Handle ---
// This is what your kernel uses to track an open file
typedef struct {
char name[11];
uint32_t size;
uint16_t start_cluster;
uint16_t current_cluster;
uint32_t current_sector_in_cluster;
uint32_t bytes_read;
} file_t;
#endif
/* FAT12_H */
// --- Public API ---
// You must implement this in your disk driver (e.g., floppy.c)
// Returns 0 on success, non-zero on error.
int disk_read_sector(uint32_t lba, uint8_t *buffer);
void fat12_init();
file_t fat12_open(const char *filename);
uint32_t fat12_read(file_t *file, uint8_t *buffer, uint32_t bytes_to_read);
#endif // FAT12_H

View File

@@ -0,0 +1,92 @@
#include "framebuffer.h"
#include <stddef.h>
#include <stdint.h>
// Simple init
void framebuffer_init(framebuffer_t *fb, void *base, uint32_t width, uint32_t height, uint32_t pitch, uint8_t bpp) {
fb->base = base;
fb->width = width;
fb->height = height;
fb->pitch = pitch;
fb->bpp = bpp;
fb->initialized = true;
}
// Pack color into 32-bit value. Format: 0xAARRGGBB
uint32_t framebuffer_pack_color(uint8_t r, uint8_t g, uint8_t b, uint8_t a) {
return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | (uint32_t)b;
}
void framebuffer_put_pixel(framebuffer_t *fb, uint32_t x, uint32_t y, uint8_t r, uint8_t g, uint8_t b, uint8_t a) {
if (!fb->initialized) return;
if (x >= fb->width || y >= fb->height) return;
if (fb->bpp != 32) return; // only 32bpp implemented here
uint8_t *line = (uint8_t*)fb->base + (size_t)y * fb->pitch;
uint32_t *pixel = (uint32_t*)(line + x * 4);
*pixel = framebuffer_pack_color(r, g, b, a);
}
void framebuffer_clear(framebuffer_t *fb, uint8_t r, uint8_t g, uint8_t b) {
if (!fb->initialized) return;
if (fb->bpp != 32) return;
uint32_t color = framebuffer_pack_color(r,g,b,0xFF);
for (uint32_t y = 0; y < fb->height; ++y) {
uint32_t *row = (uint32_t*)((uint8_t*)fb->base + (size_t)y * fb->pitch);
for (uint32_t x = 0; x < fb->width; ++x) {
row[x] = color;
}
}
}
void framebuffer_fill_rect(framebuffer_t *fb, uint32_t x, uint32_t y, uint32_t w, uint32_t h, uint8_t r, uint8_t g, uint8_t b) {
if (!fb->initialized) return;
if (fb->bpp != 32) return;
if (x >= fb->width || y >= fb->height) return;
if (x + w > fb->width) w = fb->width - x;
if (y + h > fb->height) h = fb->height - y;
uint32_t color = framebuffer_pack_color(r,g,b,0xFF);
for (uint32_t yy = 0; yy < h; ++yy) {
uint32_t *row = (uint32_t*)((uint8_t*)fb->base + (size_t)(y + yy) * fb->pitch) + x;
for (uint32_t xx = 0; xx < w; ++xx) {
row[xx] = color;
}
}
}
// Simple blit from a source buffer with 32bpp pixels and given pitch (bytes per line)
void framebuffer_blit(framebuffer_t *fb, uint32_t dst_x, uint32_t dst_y, const void *src, uint32_t src_w, uint32_t src_h, uint32_t src_pitch) {
if (!fb->initialized) return;
if (fb->bpp != 32) return;
if (dst_x >= fb->width || dst_y >= fb->height) return;
uint32_t copy_w = src_w;
uint32_t copy_h = src_h;
if (dst_x + copy_w > fb->width) copy_w = fb->width - dst_x;
if (dst_y + copy_h > fb->height) copy_h = fb->height - dst_y;
const uint8_t *s = (const uint8_t*)src;
for (uint32_t yy = 0; yy < copy_h; ++yy) {
uint32_t *dst_row = (uint32_t*)((uint8_t*)fb->base + (size_t)(dst_y + yy) * fb->pitch) + dst_x;
const uint32_t *src_row = (const uint32_t*)(s + (size_t)yy * src_pitch);
for (uint32_t xx = 0; xx < copy_w; ++xx) {
dst_row[xx] = src_row[xx];
}
}
}
void framebuffer_test_pattern(framebuffer_t *fb) {
if (!fb->initialized) return;
// simple color bars
uint32_t band_h = fb->height / 6;
framebuffer_fill_rect(fb, 0, 0, fb->width, band_h, 0xFF, 0x00, 0x00); // red
framebuffer_fill_rect(fb, 0, band_h, fb->width, band_h, 0x00, 0xFF, 0x00); // green
framebuffer_fill_rect(fb, 0, band_h*2, fb->width, band_h, 0x00, 0x00, 0xFF); // blue
framebuffer_fill_rect(fb, 0, band_h*3, fb->width, band_h, 0xFF, 0xFF, 0x00); // yellow
framebuffer_fill_rect(fb, 0, band_h*4, fb->width, band_h, 0xFF, 0x00, 0xFF); // magenta
framebuffer_fill_rect(fb, 0, band_h*5, fb->width, fb->height - band_h*5, 0x00, 0xFF, 0xFF); // cyan
}

View File

@@ -0,0 +1,25 @@
#ifndef FRAMEBUFFER_H
#define FRAMEBUFFER_H
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
typedef struct {
void *base;
uint32_t width;
uint32_t height;
uint32_t pitch;
uint8_t bpp;
bool initialized;
} framebuffer_t;
void framebuffer_init(framebuffer_t *fb, void *base, uint32_t width, uint32_t height, uint32_t pitch, uint8_t bpp);
uint32_t framebuffer_pack_color(uint8_t r, uint8_t g, uint8_t b, uint8_t a);
void framebuffer_put_pixel(framebuffer_t *fb, uint32_t x, uint32_t y, uint8_t r, uint8_t g, uint8_t b, uint8_t a);
void framebuffer_clear(framebuffer_t *fb, uint8_t r, uint8_t g, uint8_t b);
void framebuffer_fill_rect(framebuffer_t *fb, uint32_t x, uint32_t y, uint32_t w, uint32_t h, uint8_t r, uint8_t g, uint8_t b);
void framebuffer_blit(framebuffer_t *fb, uint32_t dst_x, uint32_t dst_y, const void *src, uint32_t src_w, uint32_t src_h, uint32_t src_pitch);
void framebuffer_test_pattern(framebuffer_t *fb);
#endif /* FRAMEBUFFER_H */

View File

@@ -13,4 +13,24 @@ static inline uint8_t inb(uint16_t port) {
return ret;
}
static inline void outw(uint16_t port, uint16_t val) {
__asm__("outw %0, %1" : : "a"(val), "Nd"(port));
}
static inline uint16_t inw(uint16_t port) {
uint16_t ret;
__asm__("inw %1, %0" : "=a"(ret) : "Nd"(port));
return ret;
}
static inline void outl(uint16_t port, uint32_t val) {
__asm__("outl %0, %1" : : "a"(val), "Nd"(port));
}
static inline uint32_t inl(uint16_t port) {
uint32_t ret;
__asm__("inl %1, %0" : "=a"(ret) : "Nd"(port));
return ret;
}
#endif

View File

@@ -1,5 +1,76 @@
#include "idt.h"
#include "irq.h"
#include "io.h"
#include "isr.h"
void irq_init() {
// IRQ initialization code
#define PIC1_CMD 0x20
#define PIC1_DATA 0x21
#define PIC2_CMD 0xA0
#define PIC2_DATA 0xA1
// FIXME: stubs
void irq0() {}
void irq1() {}
void irq2() {}
void irq3() {}
void irq4() {}
void irq5() {}
void irq6() {}
void irq7() {}
void irq8() {}
void irq9() {}
void irq10() {}
void irq11() {}
void irq12() {}
void irq13() {}
void irq14() {}
void irq15() {}
// --- stubs end
void irq_remap(void)
{
outb(PIC1_CMD, 0x11); // ICW1 edge triggered, cascade, need ICW4
outb(PIC2_CMD, 0x11);
outb(PIC1_DATA, 0x20); // ICW2 master base vector
outb(PIC2_DATA, 0x28); // ICW2 slave base vector
outb(PIC1_DATA, 0x04); // ICW3 slave on IRQ2
outb(PIC2_DATA, 0x02); // ICW3 cascade identity
outb(PIC1_DATA, 0x01); // ICW4 8086 mode
outb(PIC2_DATA, 0x01);
// Mask everything except IRQ0 (timer) and IRQ1 (keyboard) for now
outb(PIC1_DATA, 0b11111001);
outb(PIC2_DATA, 0xFF);
}
void irq_install(void)
{
irq_remap();
/* Fill IRQ entries in the IDT (0x20 … 0x2F) */
//extern void irq0(), irq1(), irq2(), irq3(), irq4(), irq5(), irq6(), irq7();
//extern void irq8(), irq9(), irq10(), irq11(), irq12(), irq13(), irq14(), irq15();
idt_set_gate(0x20, (uint32_t)irq0);
idt_set_gate(0x21, (uint32_t)irq1);
/* … repeat for the rest or loop … */
for (int i = 2; i < 16; ++i)
idt_set_gate(0x20 + i, (uint32_t)irq0 + i * 8); // crude but works
}
/* Called from the assembly stubs (see irq.asm below) */
void irq_handler(uint32_t int_num)
{
/* int_num is the *remapped* vector, e.g. 0x21 for keyboard */
if (interrupt_handlers[int_num]) {
interrupt_handlers[int_num]();
}
/* ---- EOI ---- */
if (int_num >= 0x28) // slave PIC
outb(PIC2_CMD, 0x20);
outb(PIC1_CMD, 0x20); // always master
}

View File

@@ -1,6 +1,10 @@
#ifndef IRQ_H
#define IRQ_H
void irq_init();
#include <stdint.h>
#endif // IRQ_H
void irq_remap(void);
void irq_install(void);
void irq_handler(uint32_t int_num);
#endif

View File

@@ -1,10 +1,11 @@
#include <stdbool.h>
#include "terminal.h"
#include "serial.h"
#include "isr.h"
#include "io.h"
#include "print.h"
static isr_callback_t interrupt_handlers[MAX_INTERRUPTS] = { 0 };
isr_callback_t interrupt_handlers[MAX_INTERRUPTS] = { 0 };
void isr_handler(uint32_t int_num, uint32_t err_code) {
terminal_write("Interrupt occurred: ");

View File

@@ -6,6 +6,7 @@
#define MAX_INTERRUPTS 256
typedef void (*isr_callback_t)(void);
extern isr_callback_t interrupt_handlers[MAX_INTERRUPTS];
void isr_handler(uint32_t int_num, uint32_t err_code);
void register_interrupt_handler(uint8_t n, isr_callback_t handler);

View File

@@ -4,8 +4,12 @@
#include "terminal.h"
#define KEYBOARD_DATA_PORT 0x60
#define KEY_BUFFER_SIZE 256
static char key_buffer[256];
static char key_buffer[KEY_BUFFER_SIZE];
static uint8_t buffer_head = 0; // Write position (interrupt)
static uint8_t buffer_tail = 0; // Read position (get_char)
static uint8_t buffer_count = 0;
static uint8_t buffer_index = 0;
// Basic US QWERTY keymap (scancode to ASCII)
@@ -21,39 +25,41 @@ static const char scancode_map[128] = {
// Interrupt handler for IRQ1
void keyboard_callback(void) {
uint8_t scancode = inb(0x60);
uint8_t scancode = inb(KEYBOARD_DATA_PORT);
// Only handle key press (ignore key release)
if (!(scancode & 0x80)) {
char c = scancode_map[scancode];
if (c && buffer_index < sizeof(key_buffer) - 1) {
key_buffer[buffer_index++] = c;
terminal_putchar(c);
}
}
if (scancode & 0x80) return; // Ignore key release
// Send End of Interrupt (EOI) to the PIC
outb(0x20, 0x20);
char c = scancode_map[scancode];
if (!c) return;
uint8_t next_head = (buffer_head + 1) % KEY_BUFFER_SIZE;
// Drop key if buffer full
if (next_head == buffer_tail) return;
key_buffer[buffer_head] = c;
buffer_head = next_head;
buffer_count++;
terminal_putchar(c);
}
void keyboard_init() {
register_interrupt_handler(33, keyboard_callback); // IRQ1 = int 33 (0x21)
}
// Blocking read (returns one char)
char keyboard_get_char() {
while (buffer_index == 0); // Busy wait
char keyboard_get_char(void) {
while (buffer_count == 0) {
__asm__ __volatile__("hlt"); // Better than busy loop
}
char c;
__asm__ __volatile__("cli");
c = key_buffer[0];
for (uint8_t i = 1; i < buffer_index; i++) {
key_buffer[i - 1] = key_buffer[i];
}
buffer_index--;
c = key_buffer[buffer_tail];
buffer_tail = (buffer_tail + 1) % KEY_BUFFER_SIZE;
buffer_count--;
__asm__ __volatile__("sti");
return c;
}

View File

@@ -12,6 +12,7 @@
#include "timer.h"
#include "utils.h"
#include "keyboard.h"
#include "irq.h"
#define LPT1 0x378
@@ -41,6 +42,9 @@ void kmain(void) {
idt_init();
serial_write("IDT initialized.\n");
irq_install();
__asm__ __volatile__ ("sti");
terminal_write("Enabling paging...\n");
paging_init();
serial_write("Paging initialized.\n");

View File

@@ -1,7 +1,7 @@
#include "kmalloc.h"
#include "terminal.h" // Optional: for debug output
#define HEAP_END 0xC0100000
#define HEAP_END 0xC0500000
static uint32_t current_heap = 0;

38
kernel/linker.ld Normal file
View File

@@ -0,0 +1,38 @@
ENTRY(kmain)
PHDRS {
text PT_LOAD FLAGS(5); /* Read + Execute */
rodata PT_LOAD FLAGS(4); /* Read only */
data PT_LOAD FLAGS(6); /* Read + Write */
}
SECTIONS {
. = 1M;
.text : {
*(.text*)
} :text
.rodata : {
*(.rodata*)
} :rodata
.data : {
*(.data*)
} :data
.bss : {
*(.bss*)
*(COMMON)
} :data
.stack (NOLOAD) : {
. = ALIGN(4);
. = . + 0x1000;
}
.heap (NOLOAD) : {
. = ALIGN(4);
. = . + 0x10000;
}
}

17
kernel/memory.c Normal file
View File

@@ -0,0 +1,17 @@
#include "memory.h"
/* note: this is a stub, please use care as theres duplicate functions in utils implementation
/* --------------------------------------------------------------------- *
* Helper: copy a single byte (used by both memcpy and memmove)
* --------------------------------------------------------------------- */
static inline void byte_copy_forward(uint8_t *dst, const uint8_t *src, size_t n)
{
while (n--) *dst++ = *src++;
}
static inline void byte_copy_backward(uint8_t *dst, const uint8_t *src, size_t n)
{
dst += n; src += n;
while (n--) *--dst = *--src;
}

25
kernel/memory.h Normal file
View File

@@ -0,0 +1,25 @@
#ifndef MEMORY_H
#define MEMORY_H
#include <stddef.h> /* size_t, NULL */
#include <stdint.h> /* uint8_t */
#ifdef __cplusplus
extern "C" {
#endif
/* C11 / POSIX-2004 signatures */
void *memcpy(void *restrict dst, const void *restrict src, size_t n);
void *memmove(void *dst, const void *src, size_t n);
int memcmp(const void *s1, const void *s2, size_t n);
/* Optional fast-path using 32-bit loads (x86 only) */
#if defined(__i386__) && !defined(MEMORY_NO_OPT)
# define MEMORY_OPTIMIZED 1
#endif
#ifdef __cplusplus
}
#endif
#endif /* MEMORY_H */

View File

@@ -1,21 +1,17 @@
#include "paging.h"
#include "io.h"
#include <stdint.h>
#include <stddef.h>
#include <string.h>
#include "io.h"
#include "paging.h"
page_directory_entry_t *page_directory = (page_directory_entry_t *)0x100000;
page_table_entry_t *page_table = (page_table_entry_t *)0x101000;
page_table_entry_t *heap_page_table = (page_table_entry_t *)0x102000; // Located right after the page directory
page_directory_entry_t *page_directory = (page_directory_entry_t *)0x200000;
page_table_entry_t *page_table = (page_table_entry_t *)0x201000;
// Helper function to set up the page directory entry
void set_page_directory(page_directory_entry_t *dir) {
for (int i = 0; i < PAGE_DIRECTORY_SIZE; i++) {
dir[i].present = 0;
}
// Set first PDE
dir[0].present = 1;
dir[0].rw = 1;
dir[0].user = 0;
dir[0].frame = (uint32_t)page_table >> 12;
dir[0].addr = (uint32_t)page_table >> 12;
}
// Helper function to set up the page table entry
@@ -23,12 +19,8 @@ void set_page_table(page_table_entry_t *table) {
for (int i = 0; i < PAGE_TABLE_SIZE; i++) {
// Set up page table entries with identity mapping
table[i].present = 1;
table[i].rw = 1; // Read/Write
table[i].user = 0; // Kernel mode
table[i].write_through = 0;
table[i].cache_disabled = 0;
table[i].accessed = 0;
table[i].frame = i; // Identity mapping
table[i].rw = 1; // Read/Write
table[i].addr = i; // Identity mapping
}
}
@@ -47,26 +39,13 @@ void enable_paging() {
// Initialize paging: set up the page directory and enable paging
void paging_init() {
// Zero out the tables
memset(page_directory, 0x00, PAGE_DIRECTORY_SIZE * sizeof *page_directory);
memset(page_table, 0x00, PAGE_TABLE_SIZE * sizeof *page_table);
// Set up identity-mapped page directory + table
set_page_directory(page_directory);
set_page_table(page_table);
// === Set up heap mapping at 0xC0100000 ===
for (int i = 0; i < PAGE_TABLE_SIZE; i++) {
heap_page_table[i].present = 1;
heap_page_table[i].rw = 1;
heap_page_table[i].user = 0;
heap_page_table[i].write_through = 0;
heap_page_table[i].cache_disabled = 0;
heap_page_table[i].accessed = 0;
heap_page_table[i].frame = (256 + i); // Start physical heap at 1MB (256*4KB = 1MB)
}
// Index 772 = 0xC0100000 / 4MB
page_directory[772].present = 1;
page_directory[772].rw = 1;
page_directory[772].user = 0;
page_directory[772].frame = (uint32_t)heap_page_table >> 12;
enable_paging();
}

View File

@@ -10,31 +10,31 @@
// Page Directory and Page Table structure
typedef struct {
uint32_t present : 1; // Present bit (1: page is present in memory)
uint32_t rw : 1; // Read-Write bit (1: page is read-write)
uint32_t user : 1; // User-supervisor bit (1: user mode access)
uint32_t write_through : 1; // Write-through cache
uint32_t cache_disabled : 1; // Cache disabled
uint32_t accessed : 1; // Accessed bit
uint32_t reserved : 1; // Reserved bit
uint32_t page_size : 1; // Page size (0: 4KB, 1: 4MB)
uint32_t global : 1; // Global page (can be used across different processes)
uint32_t available : 3; // Available bits for the system
uint32_t frame : 20; // Frame address (physical address)
uint32_t present : 1; // Present bit (1: page is present in memory)
uint32_t rw : 1; // Read-Write bit (1: page is read-write)
uint32_t user : 1; // User-supervisor bit (1: user mode access)
uint32_t write_through : 1; // Write-through cache
uint32_t cache_disabled : 1; // Cache disabled
uint32_t accessed : 1; // Accessed bit
uint32_t dirty : 1; // Dirty bit
uint32_t attribute : 1; // Page size (0: 4KB, 1: 4MB)
uint32_t global : 1; // Global page (can be used across different processes)
uint32_t reserved : 3; // Unused
uint32_t addr : 20; // Page frame address (physical address)
} __attribute__((packed)) page_table_entry_t;
// Define page directory entry
typedef struct {
uint32_t present : 1;
uint32_t rw : 1;
uint32_t user : 1;
uint32_t write_through : 1;
uint32_t cache_disabled : 1;
uint32_t accessed : 1;
uint32_t reserved : 1;
uint32_t zero : 5; // Must be zero for page directory
uint32_t reserved_2 : 7; // Reserved bits
uint32_t frame : 20; // Frame address of the page table
uint32_t present : 1; // Present bit (1: PTE is present in memory)
uint32_t rw : 1; // Read-Write bit (1: pages are read-write)
uint32_t user : 1; // User-supervisor bit (1: user mode access)
uint32_t write_through : 1; // Write-through cache
uint32_t cache_disabled : 1; // Cache disabled
uint32_t accessed : 1; // Accessed bit
uint32_t available : 1; // Unused
uint32_t page_size : 1; // Page size (0: 4KB, 1: 4MB)
uint32_t available_2 : 4; // Unused
uint32_t addr : 20; // Page table address
} __attribute__((packed)) page_directory_entry_t;
extern page_directory_entry_t *page_directory;

View File

@@ -1,7 +1,7 @@
#ifndef PRINT_H
#define PRINT_H
#include "types.h"
#include <stdint.h>
void print_string(const char *str);
void my_printf(const char *format, ...);

View File

@@ -1,7 +1,12 @@
#include "scheduler.h"
#include <stddef.h>
// Defined in context_switch.s
extern void ctx_switch(uint32_t **old_sp_ptr, uint32_t *new_sp);
static task_t tasks[MAX_TASKS];
// Stack memory area. Note: x86 Stacks grow DOWN from high to low addresses.
static uint32_t task_stacks[MAX_TASKS][STACK_SIZE / sizeof(uint32_t)];
static int task_count = 0;
@@ -9,7 +14,6 @@ static task_t *task_list = NULL;
static task_t *current_task = NULL;
void scheduler_init() {
// Initialize task list, etc.
task_list = NULL;
current_task = NULL;
task_count = 0;
@@ -20,16 +24,42 @@ void scheduler_add_task(void (*entry)(void)) {
task_t *new_task = &tasks[task_count];
new_task->id = task_count;
new_task->entry = entry;
// Simulate a stack pointer pointing to the "top" of the stack
new_task->stack_ptr = &task_stacks[task_count][STACK_SIZE / sizeof(uint32_t) - 1];
// 1. Calculate the top of the stack (High Address)
// We point to the very end of the array.
uint32_t *sp = &task_stacks[task_count][STACK_SIZE / sizeof(uint32_t)];
// 2. "Forge" the stack frame to look like ctx_switch saved it.
// We push values onto the stack by decrementing the pointer and writing.
// --- Return Address (EIP) ---
sp--;
*sp = (uint32_t)entry; // When ctx_switch does 'ret', it pops this and jumps to 'entry'
// --- EFLAGS ---
sp--;
*sp = 0x00000202; // Reserved bit set, Interrupts Enabled (IF=1). Important!
// --- General Purpose Registers (PUSHA/POPA layout) ---
// Order: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI
// We initialize them to 0 or meaningful values.
sp--; *sp = 0; // EAX
sp--; *sp = 0; // ECX
sp--; *sp = 0; // EDX
sp--; *sp = 0; // EBX
sp--; *sp = 0; // ESP (Ignored by POPA)
sp--; *sp = 0; // EBP
sp--; *sp = 0; // ESI
sp--; *sp = 0; // EDI
// Save this final stack location to the TCB
new_task->stack_ptr = sp;
new_task->next = NULL;
// Add to task list
// 3. Add to linked list
if (task_list == NULL) {
task_list = new_task;
current_task = new_task; // Make sure we have a current task to start
} else {
task_t *tail = task_list;
while (tail->next) {
@@ -42,21 +72,25 @@ void scheduler_add_task(void (*entry)(void)) {
}
void scheduler_schedule() {
// Very basic round-robin switch
if (current_task && current_task->next) {
if (!current_task) return;
task_t *prev = current_task;
// Round-robin logic
if (current_task->next) {
current_task = current_task->next;
} else {
current_task = task_list; // Loop back
current_task = task_list;
}
// Call context switch or simulate yielding to current_task
// In real system: context_switch_to(current_task)
if (current_task && current_task->entry) {
current_task->entry(); // Simulate switching by calling
// Perform the ACTUAL context switch
// We pass the address of the previous task's stack pointer storage
// and the value of the new task's stack pointer.
if (prev != current_task) {
ctx_switch(&prev->stack_ptr, current_task->stack_ptr);
}
}
void scheduler_yield() {
// Stub: manually call schedule for cooperative multitasking
scheduler_schedule();
}

View File

@@ -4,18 +4,21 @@
#include <stdint.h>
#define MAX_TASKS 8
#define STACK_SIZE 1024
#define STACK_SIZE 1024 // in bytes
typedef struct task {
uint32_t id;
void (*entry)(void);
// The most important field:
// Where was the stack pointer when we last left this task?
uint32_t *stack_ptr;
struct task *next;
} task_t;
void scheduler_init();
void scheduler_add_task(void (*entry)(void));
void scheduler_schedule();
void scheduler_yield(); // Optional for cooperative scheduling
void scheduler_yield();
#endif // SCHEDULER_H

View File

@@ -12,6 +12,7 @@ static uint16_t* const vga_buffer = (uint16_t*) VGA_ADDRESS;
static uint8_t cursor_x = 0;
static uint8_t cursor_y = 0;
static uint8_t current_color = WHITE_ON_BLACK;
static uint16_t last_cursor_pos = 0xFFFF;
void terminal_initialize(void) {
for (uint16_t y = 0; y < VGA_HEIGHT; y++) {
@@ -96,8 +97,10 @@ void terminal_clear(void) {
update_cursor();
}
void update_cursor() {
void update_cursor(void) {
uint16_t pos = cursor_y * VGA_WIDTH + cursor_x;
if (pos == last_cursor_pos) return;
last_cursor_pos = pos;
outb(0x3D4, 0x0F);
outb(0x3D5, (uint8_t)(pos & 0xFF));

View File

@@ -1,9 +1,8 @@
#include <stdbool.h>
#include <string.h>
#include "malloc.h"
#include "print.h"
#include "threading.h"
#include "types.h"
#include "utils.h"
#include <stdint.h>
#define MAX_THREADS 16 // Maximum number of threads
#define THREAD_STACK_SIZE 8192 // Stack size for each thread

View File

@@ -1 +0,0 @@
#include "types.h"

View File

@@ -1,62 +0,0 @@
#ifndef TYPES_H
#define TYPES_H
// ----------------------------
// Fixed-width integer types
// ----------------------------
typedef unsigned char uint8_t;
typedef signed char int8_t;
typedef unsigned short uint16_t;
typedef signed short int16_t;
typedef unsigned int uint32_t;
typedef signed int int32_t;
typedef unsigned long long uint64_t;
typedef signed long long int64_t;
// ----------------------------
// Boolean & NULL definitions
// ----------------------------
#ifndef __cplusplus
typedef enum { false = 0, true = 1 } bool;
#endif
#ifndef NULL
#define NULL ((void*)0)
#endif
// ----------------------------
// OS subsystem types
// ----------------------------
typedef uint32_t size_t;
typedef int32_t ssize_t;
typedef uint32_t phys_addr_t; // Physical address
typedef uint32_t virt_addr_t; // Virtual address
typedef uint32_t pid_t; // Process ID
typedef uint32_t tid_t; // Thread ID
// ----------------------------
// Bitfield & utility macros
// ----------------------------
#define BIT(n) (1U << (n))
#define BITS(m, n) (((1U << ((n) - (m) + 1)) - 1) << (m))
// Align value to next multiple of alignment
#define ALIGN_UP(val, align) (((val) + ((align)-1)) & ~((align)-1))
#define ALIGN_DOWN(val, align) ((val) & ~((align)-1))
// ----------------------------
// Attributes for structures
// ----------------------------
#define PACKED __attribute__((packed))
#define ALIGN(x) __attribute__((aligned(x)))
// ----------------------------
// Likely/unlikely branch hints
// (for future optimization use)
// ----------------------------
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#endif // TYPES_H

View File

@@ -76,20 +76,3 @@ char* utoa(unsigned int value, char* str, int base) {
reverse(str, i);
return str;
}
int memcmp(const void *ptr1, const void *ptr2, size_t num) {
const uint8_t *p1 = ptr1, *p2 = ptr2;
for (size_t i = 0; i < num; i++) {
if (p1[i] != p2[i]) {
return p1[i] < p2[i] ? -1 : 1;
}
}
return 0;
}
void *memset(void *dest, int value, size_t len) {
unsigned char *ptr = (unsigned char *)dest;
while (len-- > 0)
*ptr++ = (unsigned char)value;
return dest;
}

View File

@@ -1,7 +1,7 @@
#ifndef UTILS_H
#define UTILS_H
#include "types.h"
#include <stddef.h>
// Convert integer to string (base is typically 10, 16, etc.)
char* itoa(int value, char* str, int base);
@@ -9,7 +9,4 @@ char* itoa(int value, char* str, int base);
// Convert unsigned integer to string (base is typically 10, 16, etc.)
char* utoa(unsigned int value, char* str, int base);
int memcmp(const void *ptr1, const void *ptr2, size_t num);
void *memset(void *dest, int value, size_t len);
#endif // UTILS_H

14
klibc/include/stdarg.h Normal file
View File

@@ -0,0 +1,14 @@
#ifndef CLASSICOS_KLIBC_STDARG_H
#define CLASSICOS_KLIBC_STDARG_H
typedef __builtin_va_list va_list;
#ifndef va_start
#define va_start(ap, param) __builtin_va_start(ap, param)
#endif
#define va_end(ap) __builtin_va_end(ap)
#define va_arg(ap, type) __builtin_va_arg(ap, type)
#define va_copy(dest, src) __builtin_va_copy(dest, src)
#endif // CLASSICOS_KLIBC_STDARG_H

12
klibc/include/stdbool.h Normal file
View File

@@ -0,0 +1,12 @@
#ifndef CLASSICOS_KLIBC_STDBOOL_H
#define CLASSICOS_KLIBC_STDBOOL_H
#ifndef __cplusplus
#define bool _Bool
#define true 1
#define false 0
#endif
#define __bool_true_false_are_defined 1
#endif // CLASSICOS_KLIBC_STDBOOL_H

10
klibc/include/stddef.h Normal file
View File

@@ -0,0 +1,10 @@
#ifndef CLASSICOS_KLIBC_STDDEF_H
#define CLASSICOS_KLIBC_STDDEF_H
typedef __SIZE_TYPE__ size_t;
typedef __PTRDIFF_TYPE__ ptrdiff_t;
#undef NULL
#define NULL ((void*)0)
#endif // CLASSICOS_KLIBC_STDDEF_H

16
klibc/include/stdint.h Normal file
View File

@@ -0,0 +1,16 @@
#ifndef CLASSICOS_KLIBC_STDINT_H
#define CLASSICOS_KLIBC_STDINT_H
typedef signed char int8_t;
typedef short int int16_t;
typedef int int32_t;
typedef long long int int64_t;
typedef unsigned char uint8_t;
typedef unsigned short int uint16_t;
typedef unsigned int uint32_t;
typedef unsigned long long int uint64_t;
typedef unsigned int uintptr_t;
#endif // CLASSICOS_KLIBC_STDINT_H

4
klibc/include/stdio.h Normal file
View File

@@ -0,0 +1,4 @@
#ifndef CLASSICOS_KLIBC_STDIO_H
#define CLASSICOS_KLIBC_STDIO_H
#endif // CLASSICOS_KLIBC_STDIO_H

4
klibc/include/stdlib.h Normal file
View File

@@ -0,0 +1,4 @@
#ifndef CLASSICOS_KLIBC_STDLIB_H
#define CLASSICOS_KLIBC_STDLIB_H
#endif // CLASSICOS_KLIBC_STDLIB_H

14
klibc/include/string.h Normal file
View File

@@ -0,0 +1,14 @@
#ifndef CLASSICOS_KLIBC_STRING_H
#define CLASSICOS_KLIBC_STRING_H
#include <stddef.h>
extern int memcmp(const void* s1, const void* s2, size_t n);
extern void* memmove(void* dst, const void* src, size_t n);
extern void* memcpy(void* dst, const void* src, size_t n);
extern void* memset(void* dst, int c, size_t n);
extern size_t strlen(const char* s);
extern int strcmp(const char* s1, const char* s2);
#endif // CLASSICOS_KLIBC_STRING_H

107
klibc/src/string.c Normal file
View File

@@ -0,0 +1,107 @@
#include <string.h>
int memcmp(const void* s1, const void* s2, size_t n) {
const unsigned char* c1 = s1;
const unsigned char* c2 = s2;
int d = 0;
while (n--) {
d = (int)*c1++ - (int)*c2++;
if (d) break;
}
return d;
}
void* memmove(void* dst, const void* src, size_t n) {
const char* p = src;
char* q = dst;
#if defined(__i386__) || defined(__x86_64__)
if (q < p) {
__asm__ volatile("cld; rep; movsb" : "+c"(n), "+S"(p), "+D"(q));
} else {
p += (n - 1);
q += (n - 1);
__asm__ volatile("std; rep; movsb; cld" : "+c"(n), "+S"(p), "+D"(q));
}
#else
if (q < p) {
while (n--) {
*q++ = *p++;
}
} else {
p += n;
q += n;
while (n--) {
*--q = *--p;
}
}
#endif
return dst;
}
void* memcpy(void* dst, const void* src, size_t n) {
const char* p = src;
char* q = dst;
#if defined(__i386__)
size_t nl = n >> 2;
__asm__ volatile("cld ; rep ; movsl ; movl %3,%0 ; rep ; movsb"
: "+c"(nl), "+S"(p), "+D"(q)
: "r"(n & 3));
#elif defined(__x86_64__)
size_t nq = n >> 3;
__asm__ volatile("cld ; rep ; movsq ; movl %3,%%ecx ; rep ; movsb"
: "+c"(nq), "+S"(p), "+D"(q)
: "r"((uint32_t)(n & 7)));
#else
while (n--) {
*q++ = *p++;
}
#endif
return dst;
}
void* memset(void* dst, int c, size_t n) {
char* q = dst;
#if defined(__i386__)
size_t nl = n >> 2;
__asm__ volatile("cld ; rep ; stosl ; movl %3,%0 ; rep ; stosb"
: "+c"(nl), "+D"(q)
: "a"((unsigned char)c * 0x01010101U), "r"(n & 3));
#elif defined(__x86_64__)
size_t nq = n >> 3;
__asm__ volatile("cld ; rep ; stosq ; movl %3,%%ecx ; rep ; stosb"
: "+c"(nq), "+D"(q)
: "a"((unsigned char)c * 0x0101010101010101U),
"r"((uint32_t)n & 7));
#else
while (n--) {
*q++ = c;
}
#endif
return dst;
}
size_t strlen(const char* s) {
const char* ss = s;
while (*ss) ss++;
return ss - s;
}
int strcmp(const char* s1, const char* s2) {
const unsigned char* c1 = (const unsigned char*)s1;
const unsigned char* c2 = (const unsigned char*)s2;
unsigned char ch;
int d = 0;
while (1) {
d = (int)(ch = *c1++) - (int)*c2++;
if (d || !ch) break;
}
return d;
}