Establish well-defined read buffers for bl, implement error printing

This commit is contained in:
vmttmv
2026-01-07 02:31:14 +02:00
parent d6ab8c91f8
commit a9b8ac7066
2 changed files with 80 additions and 42 deletions

View File

@@ -9,6 +9,4 @@ SECTIONS {
*(.bss*) *(.bss*)
*(COMMON) *(COMMON)
} }
read_buf = .;
} }

View File

@@ -1,3 +1,4 @@
#include <stddef.h>
#include <stdint.h> #include <stdint.h>
// ATA IO Ports // ATA IO Ports
@@ -23,11 +24,16 @@
// Disk sector size // Disk sector size
#define SECTOR_SIZE 512 #define SECTOR_SIZE 512
#define PH_PER_SECTOR (SECTOR_SIZE / sizeof(Elf32_Phdr))
// Kernel start LBA // Kernel start LBA
#define KERN_START_SECT 5 #define KERN_START_SECT 5
extern uint8_t read_buf[]; // VGA
// Expects bios initialization for text mode (3), buffer at 0xb8000
#define VGA_ADDRESS 0xB8000
#define VGA_COLS 80
#define VGA_ROWS 25
// ELF Header (32-bit) // ELF Header (32-bit)
typedef struct { typedef struct {
@@ -110,8 +116,9 @@ static void ata_read_sector(void *addr, uint32_t lba) {
} }
} }
static void load_segment(uint8_t *addr, uint32_t offset, uint32_t size) static void ata_read_sectors(uint8_t *addr, uint32_t offset, uint32_t size)
{ {
// Reads are offset from the starting sector of the kernel
uint32_t lba = KERN_START_SECT + offset / SECTOR_SIZE; uint32_t lba = KERN_START_SECT + offset / SECTOR_SIZE;
uint32_t off = offset % 512; uint32_t off = offset % 512;
uint8_t data[512]; uint8_t data[512];
@@ -135,61 +142,94 @@ static void load_segment(uint8_t *addr, uint32_t offset, uint32_t size)
} }
} }
static void on_error(const char *msg)
{
uint16_t *ptr = (uint16_t *)VGA_ADDRESS;
// Clear
uint16_t val = 0x0f | (uint8_t)' ';
for (size_t i = 0; i < VGA_COLS * VGA_ROWS; i++) {
ptr[i] = val;
}
// Print error
for (size_t i = 0; msg[i]; i++) {
ptr[i] = 0xf00 | (uint8_t)msg[i];
}
// Halt
while (1) {
__asm__("hlt");
}
}
// Load an ELF executable into memory. // Load an ELF executable into memory.
static int elf_load(const void *data) { // NOTE: Only 32-byte program headers are supported.
const Elf32_Ehdr* header = (const Elf32_Ehdr*)data; // Returns the entry point to the program.
const Elf32_Phdr* ph = (const Elf32_Phdr*)((uint8_t*)data + header->e_phoff); static void *elf_load(const void *data) {
const Elf32_Ehdr *header = (const Elf32_Ehdr*)data;
if (header->e_phentsize != sizeof(Elf32_Phdr)) {
// The bootloader only handles 32-byte program header entries
on_error("ERROR: Unsupported program header entry size, halting...");
}
// Buffer for the program headers
uint8_t file_buf[SECTOR_SIZE];
// Current file offset to the next program header
uint32_t file_offset = header->e_phoff;
for (int i = 0; i < header->e_phnum; i++) { for (int i = 0; i < header->e_phnum; i++) {
if (ph[i].p_type != PT_LOAD) // Check for sector boundary.
// Program headers are read in a sector at a time
// 512 / 32 = 16 PH per sector
if (i % PH_PER_SECTOR == 0) {
uint32_t count = (header->e_phnum - i) * sizeof(Elf32_Phdr);
if (count > SECTOR_SIZE) {
count = SECTOR_SIZE;
}
// Reads
ata_read_sectors(file_buf, file_offset, count);
file_offset += count;
}
// PH being processed currently, index mod 16 as headers
// are being loaded in sector by sector.
const Elf32_Phdr *ph = (const Elf32_Phdr *)file_buf + (i % PH_PER_SECTOR);
// Discard non-load segments
if (ph->p_type != PT_LOAD)
continue; continue;
uint32_t offset = ph[i].p_offset; // Load in the segment
uint32_t vaddr = ph[i].p_vaddr; uint32_t offset = ph->p_offset;
uint32_t filesz = ph[i].p_filesz; uint32_t filesz = ph->p_filesz;
uint32_t memsz = ph[i].p_memsz; uint32_t memsz = ph->p_memsz;
uint8_t *vaddr = (uint8_t *)ph->p_vaddr;
load_segment((uint8_t *)vaddr, offset, filesz); ata_read_sectors(vaddr, offset, filesz);
// Zero remaining BSS (if any) // Zero remaining BSS (if any)
if (memsz > filesz) { if (memsz > filesz) {
uint8_t* bss_start = (uint8_t*)(vaddr + filesz); uint8_t* bss_start = vaddr + filesz;
for (uint32_t j = 0; j < memsz - filesz; j++) { for (uint32_t j = 0; j < memsz - filesz; j++) {
bss_start[j] = 0; bss_start[j] = 0;
} }
} }
} }
return header->e_entry; // Return the entry point
} return (void *)header->e_entry;
static uint32_t
total_headers_size(const Elf32_Ehdr *header) {
uint32_t phend = header->e_phoff + header->e_phentsize*header->e_phnum;
// Align to sector size
uint32_t a = SECTOR_SIZE-1;
return (phend + a) & ~a;
} }
void *load_kernel(void) { void *load_kernel(void) {
// Read the first sector // ELF header buffer
ata_read_sector(read_buf, KERN_START_SECT); uint8_t header_buf[SECTOR_SIZE];
const Elf32_Ehdr* header = (const Elf32_Ehdr*)read_buf; // Read the first sector (contains the ELF header)
ata_read_sector(header_buf, KERN_START_SECT);
// Remaining data size, subtract the first 512B already read // `elf_load()` returns the entry point
uint32_t rem = total_headers_size(header) - SECTOR_SIZE; return elf_load(header_buf);
// Read the rest if necessary
if (rem) {
uint8_t *dst = read_buf + SECTOR_SIZE;
for (uint32_t i = 0; i < rem / SECTOR_SIZE; i++, dst += 512) {
ata_read_sector(dst, KERN_START_SECT + i + 1);
}
}
elf_load(read_buf);
return (void *)header->e_entry;
} }