CustomHeapManager/main.c

134 lines
2.5 KiB
C
Raw Normal View History

2024-02-07 23:15:44 -08:00
#include <stddef.h>
#include <stdio.h>
#include <unistd.h>
2024-02-07 23:15:44 -08:00
#define ALIGN4(s) (((((s)-1)>>2)<<2)+4)
#define BLOCK_SIZE sizeof(struct block)
2024-02-08 02:05:06 -08:00
/// The memory block's header.
struct block
{
size_t size;
struct block* next;
int free;
};
struct block* freeList = NULL;
2024-02-08 02:00:57 -08:00
/// Extends heap memory upwards, towards zero.
/// @param [in] last The last block that the newly created block will link to.
/// @param [in] s The size of the memory needed aligned by 4 bytes.
/// @returns The new memory block.
struct block* extend_heap(struct block* last, size_t s)
{
struct block* b = sbrk(0);
if (sbrk(BLOCK_SIZE + s) == (void*)-1)
return NULL;
b->size = s;
b->next = NULL;
b->free = 0;
if (last)
last->next = b;
return b;
}
2024-02-08 02:00:57 -08:00
/// Finds the first block that will fit the given size.
/// @param [in] s The 4 byte aligned size to look for.
/// @returns The matching available memory block.
struct block* find_first(size_t s)
{
struct block* current = freeList;
while (current && (!current->free || current->size < s))
current = current->next;
return current;
}
2024-02-08 02:00:57 -08:00
/// Finds the last memory block in the linked list to attach a new block to.
/// @returns The last memory block.
struct block* find_last()
2024-02-07 23:15:44 -08:00
{
struct block* current = freeList;
while (current && current->next)
current = freeList->next;
return current;
}
2024-02-08 02:00:57 -08:00
/// Will find or allocate a memory block.
/// @param [in] size The size of the memory block to request.
/// @returns The requested memory on the heap.
/// @todo Fragmenting functionality.
void* malloc(size_t size)
{
struct block* b;
size_t alignedSize = ALIGN4(size);
if (freeList)
{
b = find_first(alignedSize);
if (!b)
b = extend_heap(find_last(), alignedSize);
2024-02-08 02:00:57 -08:00
/*
else
Fragment here if possible.
*/
}
else
{
b = extend_heap(NULL, alignedSize);
if (!b)
return NULL;
freeList = b;
}
2024-02-08 02:08:38 -08:00
return b + 1;
2024-02-07 23:15:44 -08:00
}
2024-02-08 02:00:57 -08:00
/// Will flag the provided memory as free and will defragment other blocks adjacent to it.
/// @param [in] ptr The memory to flag as free.
/// @note If all data after the provided memory is free, it will reduce the heap size.
/// @todo Reverse defragmenting.
2024-02-07 23:15:44 -08:00
void free(void* ptr)
{
if (!ptr)
return;
2024-02-08 02:08:38 -08:00
struct block* b = ptr - 1;
b->free = 1;
struct block* link = b->next;
while (b->next && b->next->free)
{
b->size += BLOCK_SIZE + b->next->size;
b->next = link->next;
}
2024-02-08 02:00:57 -08:00
// Reverse defragment here.
if (!b->next)
brk(b);
2024-02-07 23:15:44 -08:00
}
int main()
2024-02-07 23:15:44 -08:00
{
int* a = (int*)malloc(sizeof(int));
int* b = (int*)malloc(sizeof(int));
*a = 5;
*b = 12;
printf("Test 1: %i\n", *a);
printf("Test 2: %i", *b);
free(b);
free(a);
2024-02-07 23:15:44 -08:00
return 0;
}