#pragma once #include "system/CPU.h" #define EHS_LOW_WORD(x) *((int*)&x) + 1 namespace ehs { class Math { private: static float Sqrt_AVX(const float from); static double Sqrt_AVX(const double from); static float Sqrt_SSE(const float from); static double Sqrt_SSE2(const double from); static float Sqrt_VFP4(const float from); static double Sqrt_VFP4(const double from); public: constexpr static float fltEpsilon = 1e-7f; constexpr static double dblEpsilon = 1e-16; /// Absolute tolerance comparison for single precision floats. static bool AbsCmp(const float a, const float b); /// Absolute tolerance comparison for double precision floats. static bool AbsCmp(const double a, const double b); /// Relative tolerance comparison for single precision floats. static bool RelCmp(const float a, const float b); /// Relative tolerance comparison for double precision floats. static bool RelCmp(const double a, const double b); /// Combined absolute and relative tolerance comparison for single precision floats. static bool ComCmp(const float a, const float b); /// Combined absolute and relative tolerance comparison for double precision floats. static bool ComCmp(const double a, const double b); template static T Max(const T a, const T b) { return a > b ? a : b; } template static T Min(const T a, const T b) { return a < b ? a : b; } template static T Clamp(const T value, const T min, const T max) { if (value < min) return min; else if (value > max) return max; return value; } template static T Abs(const T from) { return from < 0 ? -from : from; } /// Retrieves a very accurate version of Pi as a long double and converts it. /// @tparam T The data type to return Pi as. /// @returns The result. template static constexpr T Pi() { return (T)3.141592653589793238462643383279502884L; } /// Converts degrees into radians. /// @tparam T The data type to return; /// @param [in] from The value to convert to radians. /// @returns The value in radians. template static T Rads(const T from) { return from * 0.01745329251994329576923690768489; } /// Converts radians into degrees. /// @tparam T The data type to return; /// @param [in] from The value to convert to degrees. /// @returns The value in degrees. template static T Degr(const T from) { return from * 57.295779513082320876798154814105; } /// A method for use of exponents. /// @tparam T The data type to return; /// @tparam I The data type to use as the exponent. /// @param [in] from The value to use the exponent on. /// @param [in] of The exponent. /// @returns The result. template static T Pow(const T from, const I of) { if (of < 0) { if (from == 0) return -0; return 1 / (from * Pow(from, (-of) - 1)); } if (of == 0) return 1; else if (of == 1) return from; return from * Pow(from, of - 1); } static float Near(const float from); static double Near(const double from); static float Floor(const float from); static double Floor(const double from); static float Ceil(const float from); static double Ceil(const double from); static float Trunc(const float from); static double Trunc(const double from); static float Mod(const float from, const float divisor); static double Mod(const double from, const double divisor); /// A method for retrieving the square root of a value. /// @tparam T The data type to use. /// @param [in] from The value to retrieve to square root of. /// @returns The result. template static T Sqrt(const T from) { T temp = 0; T result = from / 2; while (result != temp) { temp = result; result = (from / temp + temp) / 2; } return result; } static double Sqrt(const double from); static float Sqrt(const float from); template static R Sin(const R angle, const R precision = 0.001) { R sum = angle; R term = angle; for (UInt_64 i = 1; Abs(term) >= precision; ++i) { term *= -angle * angle / (R)((2 * i + 1) * (2 * i)); sum += term; } return sum; /* R sum = 0; for (USize n = 0; n < precision; ++n) sum += Pow(-1, n) / (R)Fact(2 * n + 1) * Pow(angle, 2 * n + 1); return sum; */ } template static R ASin(const R yPos, const T precision = 10) { R sum = 0; for (T n = 0; n < precision; ++n) sum += (R)Fact(2 * n) / (Pow(4, n) * Pow((R)Fact(n), 2) * (2 * n + 1)) * Pow(yPos, 2 * n + 1); return sum; } /// A trigonometry Cosine function for finding the X-Axis position from the Z-Axis angle. /// @tparam R BaseInput and result data type. /// @tparam T Precision data type. /// @param[in] angle The angle in radians from the Z-Axis. /// @param [in] precision Sigma max. /// @returns The X-Axis position. template static R Cos(const R angle, const R precision = 0.001) { R sum = 1.0; R term = 1.0; for (UInt_64 i = 2; Abs(term) >= precision; i += 2) { term *= -angle * angle / (R)(i * (i - 1)); sum += term; } return sum; /* R sum = 0; for (T n = 0; n < precision; ++n) sum += Pow(-1, n) / (R)Fact(2 * n) * Pow(angle, 2 * n); return sum; */ } /// A trigonometry Arc Cosine function for finding the Z-Axis angle form the X-Axis position. /// @tparam R BaseInput and result data type. /// @tparam T Precision data type. /// @param [in] xPos The position from the X-Axis. /// @param [in] precision Sigma max. /// @returns The Z-Axis angle. template static R ACos(const R xPos, const T precision = 10) { return Pi() / 2 - ASin(xPos, precision); } template static R Tan(const R angle, const R precision = 0.001) { /* R sum = 0; for (T n = 1; n < precision + 1; ++n) sum += B(2 * n) * Pow(-4, n) * (1 - Pow(4, n)) / (R)Fact(2 * n) * Pow(angle, 2 * n - 1); return sum; */ return Sin(angle) / Cos(angle); } template static R ATan(const R x, const T precision = 1) { R sum = 0; for (T n = 0; n < precision; ++n) sum += Pow(-1, n) / (2 * n + 1) * Pow(x, 2 * n + 1); return sum; } template static R Cot(const R x, const R precision = 0.001) { return 1 / Tan(x, precision); } template static T Fact(const T n) { if (n <= 1) return 1; return n * Fact(n - 1); } template static R Combination(const T n, const T k) { if (k <= n) return (R)Fact(n) / (R)(Fact(n - k) * Fact(k)); return 0; } template static R B(const T n) { R innerSum = 0; R outerSum = 0; for (T k = 0; k <= n; ++k) { for (T r = 0; r <= k; ++r) innerSum += Pow(-1, r) * Combination(k, r) * Pow(r, n); outerSum += 1 / ((R)k + 1) * innerSum; innerSum = 0; } return outerSum; } }; }