EHS/src/EHS.cpp

689 lines
17 KiB
C++
Raw Normal View History

2024-02-05 22:25:30 -08:00
#include "ehs/EHS.h"
#include "ehs/Log.h"
#include "ehs/Version.h"
#include "ehs/io/Console.h"
#include "ehs/GarbageCollector.h"
#include "ehs/io/audio/Audio.h"
#include "ehs/io/img/Img.h"
#include "ehs/io/img/PNG.h"
#include "ehs/io/RIFF.h"
#include <zlib.h>
#if defined(EHS_OS_LINUX)
#include <sys/mman.h>
#endif
namespace ehs
{
constexpr Char_32 name_32[] = U"Event Horizon Suite";
constexpr Char_16 name_16[] = L"Event Horizon Suite";
constexpr Char_8 name_8[] = "Event Horizon Suite";
constexpr Char_32 acronym_32[] = U"EHS";
constexpr Char_16 acronym_16[] = L"EHS";
constexpr Char_8 acronym_8[] = "EHS";
constexpr Char_32 versionId_32[] = U"Release";
constexpr Char_16 versionId_16[] = L"Release";
constexpr Char_8 versionId_8[] = "Release";
Str_8 appName;
Str_8 appVerId;
Version appVer;
const Char_32* GetName_32()
{
return name_32;
}
const Char_16* GetName_16()
{
return name_16;
}
const Char_8* GetName_8()
{
return name_8;
}
Str_8 GetAppName_8()
{
return appName;
}
const Char_32* GetAcronym_32()
{
return acronym_32;
}
const Char_16* GetAcronym_16()
{
return acronym_16;
}
const Char_8* GetAcronym_8()
{
return acronym_8;
}
const Char_32* GetVersionId_32()
{
return versionId_32;
}
const Char_16* GetVersionId_16()
{
return versionId_16;
}
const Char_8* GetVersionId_8()
{
return versionId_8;
}
Str_8 GetAppVersionId_8()
{
return appVerId;
}
Version GetVersion()
{
return {1, 2, 0};
}
Version GetAppVersion()
{
return appVer;
}
bool DecodeWAV(const ehs::AudioCodec* const codec, ehs::Serializer<ehs::UInt_64>& in, ehs::Audio* out)
{
RIFF riff(in);
if (riff.GetType() != "WAVE")
{
EHS_LOG_INT("Error", 0, "Data is not in WAVE format.");
return false;
}
RIFF_Chunk fmt = riff.GetChunk("fmt ");
if (!fmt.IsValid())
{
EHS_LOG_INT("Error", 1, "Wave does not have a format chunk.");
return false;
}
Serializer<> fmtSer = fmt.GetData();
RIFF_Chunk dChunk = riff.GetChunk("data");
if (!dChunk.IsValid())
{
EHS_LOG_INT("Error", 2, "Wave does not have a data chunk.");
return false;
}
UInt_16 compression = fmtSer.Read<UInt_16>();
if (compression == 0x2)
{
EHS_LOG_INT("Error", 3, "Microsoft ADPCM compression unsupported.");
return false;
}
else if (compression == 0x6)
{
EHS_LOG_INT("Error", 4, "ITU G.711 a-law compression unsupported.");
return false;
}
else if (compression == 0x7)
{
EHS_LOG_INT("Error", 5, "ITU G.711 µ-law compression unsupported.");
return false;
}
else if (compression == 0x11)
{
EHS_LOG_INT("Error", 6, "IMA ADPCM compression unsupported.");
return false;
}
else if (compression == 0x16)
{
EHS_LOG_INT("Error", 7, "TU G.723 ADPCM (Yamaha) compression unsupported.");
return false;
}
else if (compression == 0x31)
{
EHS_LOG_INT("Error", 8, "GSM 6.10 compression unsupported.");
return false;
}
else if (compression == 0x40)
{
EHS_LOG_INT("Error", 9, "ITU G.721 ADPCM compression unsupported.");
return false;
}
else if (compression == 0x50)
{
EHS_LOG_INT("Error", 10, "MPEG compression unsupported.");
return false;
}
else if (compression == 0xFFFF)
{
EHS_LOG_INT("Error", 11, "Experimental compression unsupported.");
return false;
}
else if (compression != 0x1 && compression != 0x3)
{
EHS_LOG_INT("Error", 12, "Wave has unknown compression of " + Str_8::FromNum(compression) + ".");
return false;
}
UInt_16 channels = fmtSer.Read<UInt_16>();
UInt_32 sampleRate = fmtSer.Read<UInt_32>();
fmtSer.SetOffset(fmtSer.GetOffset() + 6);
UInt_8 byteDepth = (UInt_8)(fmtSer.Read<UInt_16>() / 8);
DataType dataType;
if (byteDepth == 1)
dataType = DataType::SINT_8;
else if (byteDepth == 2)
dataType = DataType::SINT_16;
else if (byteDepth == 3)
dataType = DataType::SINT_24;
else if (byteDepth == 4 && compression == 0x3)
dataType = DataType::FLOAT;
else if (byteDepth == 4)
dataType = DataType::SINT_32;
else if (byteDepth == 8)
dataType = DataType::SINT_64;
else
return false;
UInt_64 size = dChunk.GetData().Size();
UInt_64 frames = size / byteDepth / channels;
*out = std::move(Audio(out->GetId(), sampleRate, dataType, channels, frames));
Serializer<> dataSer = dChunk.GetData();
for (UInt_32 i = 0; i < dataSer.Size(); i += byteDepth)
{
if (byteDepth == 1)
{
*(SInt_8*)&(*out)[i] = dataSer.Read<SInt_8>();
if ((*out)[i] > *(SInt_8*)out->GetPeak())
out->SetPeak(sizeof(SInt_8), &(*out)[i]);
}
else if (byteDepth == 2)
{
*(SInt_16*)&(*out)[i] = dataSer.Read<SInt_16>();
if (*(SInt_16*)&(*out)[i] > *(SInt_16*)out->GetPeak())
out->SetPeak(sizeof(SInt_16), &(*out)[i]);
}
else if (byteDepth == 3)
{
*(SInt_16*)&(*out)[i + 1] = dataSer.Read<SInt_16>();
(*out)[i] = dataSer.Read<Byte>();
SInt_32 signal = 0;
signal |= (*out)[i];
signal |= (*out)[i + 1] << 8;
signal |= (*out)[i + 2] << 16;
SInt_32 peak = 0;
peak |= out->GetPeak()[0];
peak |= out->GetPeak()[1] << 8;
peak |= out->GetPeak()[2] << 16;
if (signal > peak)
out->SetPeak(3, &(*out)[i]);
}
else if (byteDepth == 4 && compression == 0x3)
{
*(float*)&(*out)[i] = dataSer.Read<float>();
if (*(float*)&(*out)[i] > *(float*)out->GetPeak())
out->SetPeak(sizeof(float), &(*out)[i]);
}
else if (byteDepth == 4)
{
*(SInt_32*)&(*out)[i] = dataSer.Read<SInt_32>();
if (*(SInt_32*)&(*out)[i] > *(SInt_32*)out->GetPeak())
out->SetPeak(sizeof(SInt_32), &(*out)[i]);
}
else if (byteDepth == 8)
{
*(SInt_64*)&(*out)[i] = dataSer.Read<SInt_64>();
if (*(SInt_64*)&(*out)[i] > *(SInt_64*)out->GetPeak())
out->SetPeak(sizeof(SInt_64), &(*out)[i]);
}
}
return true;
}
bool EncodeEHA(const ehs::AudioCodec* const codec, ehs::Serializer<ehs::UInt_64>& out, const ehs::Audio* in)
{
Serializer<UInt_64> result(codec->GetEndianness());
result.WriteVersion({1, 0, 0});
result.Write(in->GetSampleRate());
result.Write(in->GetDataType());
result.Write(in->GetByteDepth());
result.Write(in->GetChannels());
result.Write(in->GetFrameCount());
UInt_64 size = in->GetSize();
UInt_8 byteDepth = in->GetByteDepth();
result.Resize(result.Size() + size + byteDepth);
Util::Copy(&result[result.GetOffset()], &in[0], size);
result.SetOffset(result.GetOffset() + size);
Util::Copy(&result[result.GetOffset()], in->GetPeak(), byteDepth);
return true;
}
bool DecodeEHA(const ehs::AudioCodec* const codec, ehs::Serializer<ehs::UInt_64>& in, ehs::Audio* out)
{
Version version = in.ReadVersion();
if (version != Version(1, 0, 0))
{
EHS_LOG_INT("Error", 0, "Incompatible audio file version.");
return false;
}
UInt_64 sampleRate = in.Read<UInt_64>();
DataType dataType = in.Read<DataType>();
UInt_8 byteDepth = in.Read<UInt_8>();
UInt_8 channels = in.Read<UInt_8>();
UInt_64 frames = in.Read<UInt_64>();
*out = Audio(out->GetId(), sampleRate, dataType, channels, frames);
UInt_64 size = out->GetSize();
Util::Copy(&(*out)[0], &in[in.GetOffset()], size);
in.SetOffset(in.GetOffset() + size);
out->SetPeak(byteDepth, &in[in.GetOffset()]);
return true;
}
bool DecodePNG(const ehs::ImgCodec* const codec, ehs::Serializer<ehs::UInt_64>& in, ehs::Img* out)
{
PNG png(out->GetId(), in);
PNG_Chunk* ihdr = png.GetChunk("IHDR");
Serializer<UInt_64>* ihdrData = ihdr->GetData();
UInt_32 width = ihdrData->Read<UInt_32>();
UInt_32 height = ihdrData->Read<UInt_32>();
UInt_8 bitDepth = ihdrData->Read<UInt_8>();
UInt_8 colorType = ihdrData->Read<UInt_8>();
if (colorType == 3)
{
EHS_LOG_INT("Error", 1, "Color type of " + Str_8::FromNum(colorType) + " is unsupported.");
return false;
}
UInt_8 channels = 1;
if (colorType == 2)
channels = 3;
else if (colorType == 4)
channels = 2;
else if (colorType == 6)
channels = 4;
*out = Img(out->GetId(), bitDepth, channels, {width, height});
UInt_8 compression = ihdrData->Read<UInt_8>();
if (compression)
{
EHS_LOG_INT("Error", 2, "Compression method of " + Str_8::FromNum(compression) + " is unsupported.");
return false;
}
UInt_8 filter = ihdrData->Read<UInt_8>();
if (filter)
{
EHS_LOG_INT("Error", 3, "Filter method of " + Str_8::FromNum(filter) + " is unsupported.");
return false;
}
UInt_8 interlaced = ihdrData->Read<UInt_8>();
if (interlaced)
{
EHS_LOG_INT("Error", 4, "Interlacing method of " + Str_8::FromNum(interlaced) + " is unsupported.");
return false;
}
UInt_32 scanline = width * (bitDepth / 8) * channels;
UInt_32 scanLineF = scanline + 1;
UInt_32 bufferSize = scanline * height + height;
Byte* buffer = new Byte[bufferSize];
PNG_Chunk* idat = png.GetChunk("IDAT");
Serializer<UInt_64>* idatData = idat->GetData();
z_stream strm = {};
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = idatData->Size();
strm.next_in = *idatData;
strm.avail_out = bufferSize;
strm.next_out = buffer;
int code = inflateInit(&strm);
if (code != Z_OK)
{
EHS_LOG_INT("Error", 5, "Failed to initialize zlib inflate with error #" + Str_8::FromNum(code) + ".");
delete[] buffer;
return false;
}
do
{
code = inflate(&strm, Z_NO_FLUSH);
if (code != Z_STREAM_END && code != Z_OK)
{
EHS_LOG_INT("Error", 6, "Failed to zlib inflate with error #" + Str_8::FromNum(code) + ".");
delete[] buffer;
return false;
}
} while (strm.avail_out);
code = inflateEnd(&strm);
if (code != Z_OK)
{
EHS_LOG_INT("Error", 7, "Failed to uninitialize zlib inflate with error #" + Str_8::FromNum(code) + ".");
delete[] buffer;
return false;
}
for (UInt_32 i = 0, o = 0; i < bufferSize; i += scanLineF, o += scanline)
{
UInt_8 fCode = buffer[i];
if (fCode == 0)
PNG::FilterNone(&buffer[i + 1], &(*out)[o], bitDepth, channels, scanline);
else if (fCode == 1)
PNG::FilterSub(&buffer[i + 1], &(*out)[o], bitDepth, channels, scanline);
else if (fCode == 2)
PNG::FilterUp(&buffer[i + 1], &(*out)[o - scanline], bitDepth, channels, scanline);
else if (fCode == 3)
PNG::FilterAverage(&buffer[i + 1], &(*out)[o - scanline], bitDepth, channels, scanline);
else if (fCode == 4)
PNG::FilterPaeth(&buffer[i + 1], &(*out)[o - scanline], bitDepth, channels, scanline);
}
delete[] buffer;
return true;
}
bool EncodeQOI(const ehs::ImgCodec* const codec, ehs::Serializer<ehs::UInt_64>& out, const ehs::Img* in)
{
UInt_8 channels = in->GetChannels();
Vec2_u64 resolution = in->GetResolution();
UInt_32 px_len = resolution.x * resolution.y * channels;
UInt_32 px_end = px_len - channels;
Byte index[256];
for (UInt_64 i = 0; i < 64; ++i)
*(UInt_32*)&index[i * 4] = 0;
Byte prevPixel[4] = {0, 0, 0, 255};
Byte pixel[4] = {0, 0, 0, 255};
Serializer<UInt_32> result(Endianness::BE, resolution.x * resolution.y * (channels + 1) + 22);
result.Write('q');
result.Write('o');
result.Write('i');
result.Write('f');
result.Write<UInt_32>(resolution.x);
result.Write<UInt_32>(resolution.y);
result.Write(in->GetChannels());
result.Write(1);
for (UInt_32 px_pos = 0, run = 0; px_pos < px_len; px_pos += channels)
{
if (channels == 4)
{
*(UInt_32*)pixel = *(UInt_32*)&(*in)[px_pos];
}
else
{
pixel[0] = (*in)[px_pos];
pixel[1] = (*in)[px_pos + 1];
pixel[2] = (*in)[px_pos + 2];
}
if (*(UInt_32*)pixel == *(UInt_32*)prevPixel)
{
run++;
if (run == 62 || px_pos == px_end)
{
result.Write<UInt_8>(0xc0 | (run - 1));
run = 0;
}
}
else
{
if (run > 0)
{
result.Write<UInt_8>(0xc0 | (run - 1));
run = 0;
}
UInt_32 index_pos = (prevPixel[0] * 3 + prevPixel[1] * 5 + prevPixel[2] * 7 + prevPixel[3] * 11) % 64 * channels;
if (*(UInt_32*)&index[index_pos] == *(UInt_32*)pixel)
{
result.Write<UInt_8>(0x00 | (index_pos / channels));
}
else
{
*(UInt_32*)&index[index_pos] = *(UInt_32*)pixel;
if (pixel[3] == prevPixel[3])
{
SInt_8 vr = pixel[0] - prevPixel[0];
SInt_8 vg = pixel[1] - prevPixel[1];
SInt_8 vb = pixel[2] - prevPixel[2];
SInt_8 vg_r = vr - vg;
SInt_8 vg_b = vb - vg;
if (
vr > -3 && vr < 2 &&
vg > -3 && vg < 2 &&
vb > -3 && vb < 2
)
{
result.Write<UInt_8>(0x40 | (vr + 2) << 4 | (vg + 2) << 2 | (vb + 2));
}
else if (
vg_r > -9 && vg_r < 8 &&
vg > -33 && vg < 32 &&
vg_b > -9 && vg_b < 8
)
{
result.Write<UInt_8>(0x80 | (vg + 32));
result.Write<UInt_8>((vg_r + 8) << 4 | (vg_b + 8));
}
else
{
result.Write<UInt_8>(0xfe);
result.Write(pixel[0]);
result.Write(pixel[1]);
result.Write(pixel[2]);
}
}
else
{
result.Write<UInt_8>(0xff);
result.SetEndianness(CPU::GetEndianness());
result.Write(*(UInt_32*)pixel);
result.SetEndianness(Endianness::BE);
}
}
}
*(UInt_32*)prevPixel = *(UInt_32*)pixel;
}
result.Write(0x100000000000000);
return true;
}
bool DecodeQOI(const ehs::ImgCodec* const codec, ehs::Serializer<ehs::UInt_64>& in, ehs::Img* out)
{
Str_8 imgType = in.ReadStr<Char_8, UInt_64>(4);
if (imgType != "qoif")
{
EHS_LOG_INT("Error", 0, "Given data is not in the qoif format.");
return false;
}
UInt_64 width = in.Read<UInt_32>();
UInt_64 height = in.Read<UInt_32>();
UInt_8 channels = in.Read<UInt_8>();
channels = 4;
UInt_8 space = in.Read<UInt_8>();
UInt_8 bitDepth = 8;
UInt_64 size = width * channels * height;
*out = Img(out->GetId(), bitDepth, channels, {width, height});
Byte prevPixel[4] = {0, 0, 0, 255};
Byte index[256];
for (UInt_64 i = 0; i < 64; ++i)
*(UInt_32*)&index[i * 4] = 0;
UInt_32 chunksLen = in.Size() - 8;
for (UInt_32 pos = 0, run = 0; pos < size; pos += channels)
{
if (run > 0)
--run;
else if (in.GetOffset() < chunksLen)
{
UInt_32 chunkType = (UInt_32)in.Read<UInt_8>();
if (chunkType == 0xfe) // RGB
{
prevPixel[0] = in.Read<UInt_8>(); // R-value
prevPixel[1] = in.Read<UInt_8>(); // G-value
prevPixel[2] = in.Read<UInt_8>(); // B-value
}
else if (chunkType == 0xff) // RGBA
{
*(UInt_32*)prevPixel = in.Read<UInt_32>();
}
else if ((chunkType & 0xc0) == 0x00) // Index
{
*(UInt_32*)prevPixel = *(UInt_32*)&index[chunkType * channels];
}
else if ((chunkType & 0xc0) == 0x40) // Diff
{
prevPixel[0] += ((chunkType >> 4) & 0x03) - 2; // R-value
prevPixel[1] += ((chunkType >> 2) & 0x03) - 2; // G-value
prevPixel[2] += (chunkType & 0x03) - 2; // B-value
}
else if ((chunkType & 0xc0) == 0x80) // Luma
{
UInt_32 mod = (UInt_32)in.Read<UInt_8>();
UInt_32 vg = (chunkType & 0x3f) - 32;
prevPixel[0] += vg - 8 + ((mod >> 4) & 0x0f); // R-value
prevPixel[1] += vg; // G-value
prevPixel[2] += vg - 8 + (mod & 0x0f); // B-value
}
else if ((chunkType & 0xc0) == 0xc0) // Run
run = (chunkType & 0x3f);
*(UInt_32*)&index[(prevPixel[0] * 3 + prevPixel[1] * 5 + prevPixel[2] * 7 + prevPixel[3] * 11) % 64 * channels] = *(UInt_32*)prevPixel;
}
if (channels == 4)
{
*((UInt_32*)&(*out)[pos]) = *(UInt_32*)prevPixel;
}
else
{
(*out)[pos] = prevPixel[0];
(*out)[pos + 1] = prevPixel[1];
(*out)[pos + 2] = prevPixel[2];
}
}
return true;
}
}
void LogRaised(const ehs::Log& log)
{
ehs::Array<ehs::Str_8> tags = log.GetTags();
ehs::Str_8 result = "{";
for (ehs::UInt_32 i = 0; i < tags.Size(); ++i)
{
result += tags[i];
if (i != tags.Size() - 1)
result += ", ";
}
result += "} (" + ehs::Str_8::FromNum(log.GetCode()) + "): " + log.GetMsg();
ehs::Console::Write_8(result);
}
int main()
{
ehs::Console::Attach();
ehs::Log::SetCallback(LogRaised);
ehs::Audio::AddCodec({
"Waveform Audio",
"wav",
ehs::Endianness::LE,
nullptr,
ehs::DecodeWAV
});
ehs::Audio::AddCodec({
"Event Horizon Audio",
"eha",
ehs::Endianness::LE,
ehs::EncodeEHA,
ehs::DecodeEHA
});
ehs::Img::AddCodec({
"Portable Network Graphic",
"png",
ehs::Endianness::BE,
nullptr,
ehs::DecodePNG
});
ehs::Img::AddCodec({
"Quite OK Image",
"qoi",
ehs::Endianness::BE,
ehs::EncodeQOI,
ehs::DecodeQOI
});
ehs::GarbageCollector::Start();
const ehs::SInt_32 code = Main(&ehs::appName, &ehs::appVerId, &ehs::appVer);
if (code)
EHS_LOG("Warning", 0, "Executable exited with code #" + ehs::Str_8::FromNum(code) + ".");
ehs::GarbageCollector::Stop();
return code;
}