EHS/include/ehs/Math.h

316 lines
7.8 KiB
C
Raw Normal View History

2024-01-31 22:28:19 -08:00
#pragma once
#include "ehs/system/CPU.h"
#define EHS_LOW_WORD(x) *((int*)&x) + 1
namespace ehs
{
class Math
{
private:
static float Sqrt_AVX(const float from);
static double Sqrt_AVX(const double from);
static float Sqrt_SSE(const float from);
static double Sqrt_SSE2(const double from);
static float Sqrt_VFP4(const float from);
static double Sqrt_VFP4(const double from);
public:
constexpr static float fltEpsilon = 1e-7f;
constexpr static double dblEpsilon = 1e-16;
/// Absolute tolerance comparison for single precision floats.
static bool AbsCmp(const float a, const float b);
/// Absolute tolerance comparison for double precision floats.
static bool AbsCmp(const double a, const double b);
/// Relative tolerance comparison for single precision floats.
static bool RelCmp(const float a, const float b);
/// Relative tolerance comparison for double precision floats.
static bool RelCmp(const double a, const double b);
/// Combined absolute and relative tolerance comparison for single precision floats.
static bool ComCmp(const float a, const float b);
/// Combined absolute and relative tolerance comparison for double precision floats.
static bool ComCmp(const double a, const double b);
template<typename T = float>
static T Max(const T a, const T b)
{
return a > b ? a : b;
}
template<typename T = float>
static T Min(const T a, const T b)
{
return a < b ? a : b;
}
template<typename T = float>
static T Clamp(const T value, const T min, const T max)
{
if (value < min)
return min;
else if (value > max)
return max;
return value;
}
template<typename T = float>
static T Abs(const T from)
{
return from < 0 ? -from : from;
}
/// Retrieves a very accurate version of Pi as a long double and converts it.
/// @tparam T The data type to return Pi as.
/// @returns The result.
template<typename T = float>
static constexpr T Pi()
{
return (T)3.141592653589793238462643383279502884L;
}
/// Converts degrees into radians.
/// @tparam T The data type to return;
/// @param [in] from The value to convert to radians.
/// @returns The value in radians.
template<typename T = float>
static T Rads(const T from)
{
return from * 0.01745329251994329576923690768489;
}
/// Converts radians into degrees.
/// @tparam T The data type to return;
/// @param [in] from The value to convert to degrees.
/// @returns The value in degrees.
template<typename T = float>
static T Degr(const T from)
{
return from * 57.295779513082320876798154814105;
}
/// A method for use of exponents.
/// @tparam T The data type to return;
/// @tparam I The data type to use as the exponent.
/// @param [in] from The value to use the exponent on.
/// @param [in] of The exponent.
/// @returns The result.
template<typename T = float, typename I = UInt_64>
static T Pow(const T from, const I of)
{
if (of < 0)
{
if (from == 0)
return -0;
return 1 / (from * Pow<T>(from, (-of) - 1));
}
if (of == 0)
return 1;
else if (of == 1)
return from;
return from * Pow<T>(from, of - 1);
}
static float Near(const float from);
static double Near(const double from);
static float Floor(const float from);
static double Floor(const double from);
static float Ceil(const float from);
static double Ceil(const double from);
static float Trunc(const float from);
static double Trunc(const double from);
static float Mod(const float from, const float divisor);
static double Mod(const double from, const double divisor);
/// A method for retrieving the square root of a value.
/// @tparam T The data type to use.
/// @param [in] from The value to retrieve to square root of.
/// @returns The result.
template<typename T = float>
static T Sqrt(const T from)
{
T temp = 0;
T result = from / 2;
while (result != temp)
{
temp = result;
result = (from / temp + temp) / 2;
}
return result;
}
static double Sqrt(const double from);
static float Sqrt(const float from);
template<typename R = float>
static R Sin(const R angle, const R precision = 0.001)
{
R sum = angle;
R term = angle;
for (UInt_64 i = 1; Abs<R>(term) >= precision; ++i)
{
term *= -angle * angle / (R)((2 * i + 1) * (2 * i));
sum += term;
}
return sum;
/*
R sum = 0;
for (USize n = 0; n < precision; ++n)
sum += Pow<R>(-1, n) / (R)Fact<T>(2 * n + 1) * Pow<R>(angle, 2 * n + 1);
return sum;
*/
}
template<typename R = float, typename T = UInt_64>
static R ASin(const R yPos, const T precision = 10)
{
R sum = 0;
for (T n = 0; n < precision; ++n)
sum += (R)Fact<T>(2 * n) / (Pow<R>(4, n) * Pow<R>((R)Fact<T>(n), 2) * (2 * n + 1)) * Pow<R>(yPos, 2 * n + 1);
return sum;
}
/// A trigonometry Cosine function for finding the X-Axis position from the Z-Axis angle.
/// @tparam R BaseInput and result data type.
/// @tparam T Precision data type.
/// @param[in] angle The angle in radians from the Z-Axis.
/// @param [in] precision Sigma max.
/// @returns The X-Axis position.
template<typename R = float>
static R Cos(const R angle, const R precision = 0.001)
{
R sum = 1.0;
R term = 1.0;
for (UInt_64 i = 2; Abs<R>(term) >= precision; i += 2)
{
term *= -angle * angle / (R)(i * (i - 1));
sum += term;
}
return sum;
/*
R sum = 0;
for (T n = 0; n < precision; ++n)
sum += Pow<R>(-1, n) / (R)Fact<T>(2 * n) * Pow<R>(angle, 2 * n);
return sum;
*/
}
/// A trigonometry Arc Cosine function for finding the Z-Axis angle form the X-Axis position.
/// @tparam R BaseInput and result data type.
/// @tparam T Precision data type.
/// @param [in] xPos The position from the X-Axis.
/// @param [in] precision Sigma max.
/// @returns The Z-Axis angle.
template<typename R = float, typename T = UInt_64>
static R ACos(const R xPos, const T precision = 10)
{
return Pi<R>() / 2 - ASin<R, T>(xPos, precision);
}
template<typename R = float>
static R Tan(const R angle, const R precision = 0.001)
{
/*
R sum = 0;
for (T n = 1; n < precision + 1; ++n)
sum += B<R>(2 * n) * Pow<R>(-4, n) * (1 - Pow<R>(4, n)) / (R)Fact<T>(2 * n) * Pow<R>(angle, 2 * n - 1);
return sum;
*/
return Sin<R>(angle) / Cos<R>(angle);
}
template<typename R = float, typename T = UInt_64>
static R ATan(const R x, const T precision = 1)
{
R sum = 0;
for (T n = 0; n < precision; ++n)
sum += Pow<R>(-1, n) / (2 * n + 1) * Pow<R>(x, 2 * n + 1);
return sum;
}
template<typename R = float>
static R Cot(const R x, const R precision = 0.001)
{
return 1 / Tan<R>(x, precision);
}
template<typename T = UInt_64>
static T Fact(const T n)
{
if (n <= 1)
return 1;
return n * Fact<T>(n - 1);
}
template<typename R = float, typename T = UInt_64>
static R Combination(const T n, const T k)
{
if (k <= n)
return (R)Fact<T>(n) / (R)(Fact<T>(n - k) * Fact<T>(k));
return 0;
}
template<typename R = float, typename T = UInt_64>
static R B(const T n)
{
R innerSum = 0;
R outerSum = 0;
for (T k = 0; k <= n; ++k)
{
for (T r = 0; r <= k; ++r)
innerSum += Pow<R, T>(-1, r) * Combination<R, T>(k, r) * Pow<R, T>(r, n);
outerSum += 1 / ((R)k + 1) * innerSum;
innerSum = 0;
}
return outerSum;
}
};
}